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Abstract 

The Nelder-Mead simplex method is a direct search algorithm that has 

found widespread use in the optimization of nonlinear functions. Originally de- 

signed for deterministic optimization, the method is robust with respect to small 

perturbations in the function's values; and therefore, this method has been used for 

optimizing stochastic functions as well. However, if the random perturbations in the 

function's values are large enough the method may terminate before reaching the 

optimizer of the expected function. We prove convergence of the simplex to a point 

with probability 1 for constant functions with additive noise for 1- and 2-dimensional 

functions and provide empirical evidence for the same result in higher dimensions. 

This result implies that as the amount of noise increases, differences between the 

expected function's values at the vertices of the simplex become obscured and the 

probability of terminating early is increased. Also, we demonstrate empirically and 

analytically the probability of early termination on an unbounded univariate linear 

function with additive noise. We propose a new modification for the Nelder-Mead 

simplex method for use in stochastic optimization. This new method reduces to 

the original method when the noise level is negligible or nonexistent; and therefore, 

it is as efficient as the Nelder-Mead method when the noise level is low. And in 

Monte Carlo experiments, our proposed method continued to reduce the expected 

function for as long as the simulations were run; whereas the original method and 

the previously best know modified simplex methods terminated early. 
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Chapter 1 

Introduction 

In this paper we present an analysis of the convergence properties of the 

simplex algorithm proposed by Neider and Mead (1965) when applied to the mini- 

mization of a function in the presence of noise. We are interested in the performance 

of the algorithm for solving the nonlinear unconstrained minimization problem: 

min £[/(x)], 

where / : 9£n —> 3ft is an unknown stochastic function. The knowledge we obtained 

from our analysis has led us to propose a new simplex algorithm for stochastic 

applications. Finally, we offer experimental results that demonstrate the superiority 

of our proposed algorithm over the Nelder-Mead algorithm. 

1.1    Background 

Today, there is a plethora of methods available to the analyst for opti- 

mizing nonlinear functions that cannot be solved analytically. These methods are 

necessarily iterative in nature and the user must supply some starting position or 

initial guesses for the parameters. Many of these methods use first-order or even 

second-order derivatives to determine a search direction to improve the value of 

the objective function, and they can be found in popular textbooks on nonlinear 

optimization such as those by Dennis and Schnabel (1983), Fletcher (1981), Gill, 

Murray, and Wright (1981) and Luenberger (1984). Zangwill (1969) presents a uni- 

fied approach to proving convergence for such methods. However, these techniques 



"are totally deterministic in nature and when applied to problems affected by 'noise', 

whether it be error in measurement or uncertainty in prediction, they are either un- 

able to reach an optimum at all or they may reach a false optimum" (Young, 1976, 

pp. 517-518). On the other hand, there exist techniques specifically designed to 

converge globally almost surely under certain conditions to a local optimizer when 

noise is present. These techniques are known as stochastic approximation methods, 

which were first introduced by Robbins and Monro (1951). 

1.2    Direct-Search Methods 

Distinct from derivative-based search methods and stochastic approxima- 

tion methods is a class of techniques known as direct-search methods. In contrast 

to other optimization techniques which require derivatives of the objective function 

to determine a search direction, a direct-search method relies solely on the value of 

the objective function on a set of points. According to Torczon (1993), Hooke and 

Jeeves (1961) introduced the term "direct search." The advantages of direct-search 

methods over derivative-based methods include the following: (1) the calculations 

are simple, (2) the storage requirements are relatively low; (3) few adjustable pa- 

rameters need to be supplied; and, (4) the algorithms are effective when evaluation 

errors are significant because they operate on the worst rather than the best point. 

Reklaitis, Ravindran, and Ragsdell (1983) further classify direct-search 

methods into two classes: heuristic techniques and theoretically-based techniques. 

The heuristic techniques are search methods that have been constructed from geo- 

metric intuition; whereas, the theoretically-based techniques "have a mathemat- 

ical foundation that allows performance guarantees, such as convergence, to be 



established, at least under restricted conditions" (Reklaitis et al., 1983, p. 75). 

The Nelder-Mead algorithm is a heuristic direct-search method. An example of a 

theoretically-based direct-search method is the conjugate direction method of Powell 

(1964). Direct-search methods are used for both deterministic and stochastic appli- 

cations. They are effective techniques in deterministic applications especially when 

derivatives are unavailable or are computationally intensive (Parkinson fe Hutchin- 

son, 1972; Olsson, 1974). Also, they are robust with respect to small perturbations 

in the function's values; and therefore, they are used often in applications where 

noise is present (Barton & Ivey, 1993; Thompson, 1989). 

1.3    History of the Nelder-Mead Simplex Algorithm 

Neider and Mead's simplex algorithm is based on the earlier work of Spend- 

ley, Hext, and Himsworth (1962). (Note, one should not confuse this method with 

the simplex method of linear programming developed by Dantzig (1963).) The al- 

gorithm developed by Spendley et al. employs a regular simplex which moves in the 

direction nearest to the direction of steepest ascent (for maximization) or steepest 

descent (for minimization) by replacing the worst vertex in the simplex with its mir- 

ror image across the face formed by the remaining vertices. A simplex is a polytope 

in ra-dimensional space with n + 1 vertices, each of which are are connected to all 

other vertices (e.g. a triangle in 2ft2, a tetrahedron in 3R3, etc.). A regular simplex 

is one with edges of equal length. A simplex design has the minimum number of 

points required to estimate the gradient direction of the response surface in dtn is 

n + 1; and, furthermore, Brooks and Mickey (1961) demonstrate that this is the 

optimum number of points for maximizing the improvement in the estimate of the 



gradient direction per unit of effort even in the presence of noise. Neider and Mead 

incorporated additional rules that allow the simplex to change its shape and size in 

order to conform to the behavior of the function in the local region of the simplex. 

The rate of progress toward the function's optimizer is presumably increased by the 

inclusion of the expansion and contraction steps, and the shrinkage step is included 

to permit convergence of the simplex to a point once the simplex has surrounded 

the optimizer. 

It appears that Neider and Mead had deterministic applications in mind 

when they modified the original simplex method of Spendley et al.. This belief is 

supported by the stopping criteria that they included in their algorithm (see Barton 

& Ivey, 1993) and the fact that they tested their algorithm on deterministic functions 

only. However, the algorithm by Spendley et al. is an implementation of the concept 

of evolutionary operation propounded by Box (1957). Evolutionary operation is 

experimental (or stochastic) optimization by nature. This has led others to infer 

that the Nelder-Mead method was designed for stochastic optimization, which is 

evidenced by the following statement: 

Although originally developed for experimental optimization, the sim- 

plex method [of Spendley et al.] and its modifications have been used 

extensively for mathematical optimizations such as the nonlinear least- 

squares fitting of data. (p. 282 A Deming & Morgan, 1973) 

1.4    The Nelder-Mead Simplex Algorithm 

Neider and Mead's algorithm begins with the function's values on a set 

of n + 1 points in the parameter space. This set of points in the parameter space 



defines a polytope in 3£n which has n + 1 vertices and is called a simplex. The 

algorithm proceeds through a sequence of operations on the simplex to direct it 

presumably toward a local optimum. Assuming that the optimum is a minimum, 

the algorithm does this by replacing the worst vertex in the simplex with a new point 

that has a lower function value through one of the following operations: reflection, 

expansion or contraction. If all of these operations fail to find a new point to 

replace the worst point in the simplex, then the entire simplex shrinks towards 

the vertex with the lowest function value. There is some disagreement about the 

interpretation of the rules set out by Neider and Mead (1965); and therefore, there 

are several variants found in papers and computer implementations of the Nelder- 

Mead simplex algorithm. Additionally, some have proposed variations for other 

reasons. These variants are discussed and summarized in Section 1.4.2. A general 

consensus of the rules in the original algorithm are provided by Barton and Ivey 

(1993); these same rules can be found in Khuri (1987), too. An outline of the rules 

for the Neider-Mead simplex algorithm for function minimization is as follows: 

1. Initialization. For a function of n parameters, choose n + 1 points to form 

an initial simplex in the parameter space (3ftn). Usually this initial simplex is 

a regular (n + l)-sided polytope (e.g. an equilateral triangle in 3£2, a regular 

tetrahedron in 3J3, etc.). Evaluate the function at each vertex of the simplex 

and rank order the vertices according to their respective function values in 

ascending order. That is, let xx represent the vertex with the lowest function 

value, 2/i = /(xi), let x2 represent the vertex with the second lowest function 

value, t/2, etc., yielding the ordered set {xi,x2,... ,xn,xn+i}. Let S° denote 

this initial simplex (ordered set). 



2. Simplex Update. Let k denote the iteration number of this stage, which 

begins by removing the vertex with the highest function value xn+i from the 

current simplex Sfc_1. Then find the centroid of the remaining n points of 

Sfc_1, which is denoted by x.Centroid- The centroid of n points in 3ftn is the point 

defined by the arithmetic average of those points as given by Equation 1.1. 

1   n 

Next, generate a new point by reflecting xn+i through xce„tro«d according to 

Equation 1.2. 

^■reflect     =     (1 + «)xcentroid ~ ÖXn+i (1.2) 

where the reflection coefficient, a, is usually taken to be 1. Then depending 

upon the rank of xcentroid among the vertices of the current simplex, one of 

the following operations will be performed on the current simplex Sfc_1 (see 

Figure 1.1 for an illustration of these operations in 3ft2): 

(a) Expansion. If y'reflect < Vu then the reflection is extended in the same 

direction using Equation 1.3. 

^■expand     —     'J^-reflect ~i   \*-       T J^-centroid \^'") 

where the expansion coefficient, 7, is usually taken to be 2. 

i. Accept. If yexpand < 2/1, then xexpand replaces x„+i in the simplex; 

ii. Reject, else xre//ect replaces xn+i in the simplex. 

(b) Reflection.   If yx  < yrefiect < Vn, then xre//ect replaces xn+a in the 

simplex. 



(c) Contraction. If yrefiect > Vn, then a contraction of the simplex is at- 

tempted, liyreflect < J/n+i, then xrefleet replaces xn+i and yreflect replaces 

yn+i before a contraction or a shrinkage is performed. The contraction 

point is calculated using Equation 1.4. 

^contract     =     /?Xn+i + (1 - ß)xCentroid (1-4) 

where the contraction coefficient, ß, is usually taken to be |. 

i. Accept. If ycontract < J/n+i, then xco„<roct replaces xn+i in the sim- 

plex; 

ii. Reject, otherwise, shrink the entire simplex towards Xi by replacing 

all the other vertices, x,, i = 2,..., (n + 1), using Equation 1.5. 

x,-   =   6xi + (l-S)x1 (1.5) 

where the shrinkage coefficient, S, is usually taken to be |. 

In all of our analyses and discussions to follow we assume the standard values 

for the coefficients of reflection, expansion, contraction and shrinkage. 

3. Return to Update Stage or Terminate. At this time either one new point 

has replaced xn+i given an expansion, a reflection or contraction has occurred, 

or n new points have replaced {x2,... ,xn+i} given a shrinkage occurred. The 

new set of points is reordered according to their respective function values 

and this new set is denoted Sfc—the simplex at the end of the kth iteration. 

If the stopping criterion is satisfied, then the algorithm terminates; otherwise, 

another iteration of the update stage is performed. 



(a) expansion (b) reflection 

(c) contraction from reflected point (d) contraction from worst point 

(e) shrinkage using reflected point 

< 

(f) shrinkage using worst point 

Figure 1.1: Simplex Operations in 3ft2 (solid dots indicate new simplex) 



1.4.1    Stopping Criterion 

Neider and Mead proposed the standard error stopping criterion given in 

Equation 1.6 below. 
n+l 

IQ"8 (1.6) ^X>-rt« < 
As Barton and Ivey (1993) point out, Neider and Mead did not have stochastic 

functions in mind, where "the standard deviation of the function's values across all 

simplex points reflects inherent stochastic variations as well as differences in (ex- 

pected) function values." They discuss the resulting problems making this an inef- 

fective stopping criterion for use with stochastic functions. For their computational 

experiments, they used a stopping criterion based on the simplex size proposed by 

Dennis and Woods (1987). This criterion is 

(1/A)max||x,--Xi||    <   e (1.7) 

where the maximization is over all points i in the current simplex, A = max(l, ||xi ||) 

and e = 10~4. Other stopping criterion have been offered by Parkinson and Hutchin- 

son (1972). One of these related to that of Powell (1964) is a measure of how far 

the simplex has moved. This measure is written as follows: 

^ElKfc-^+1ll2 (i-8) 

where vertex xf+1 replaces vertex x* during the kth iteration of the simplex update 

stage. With the exception of a shrinkage, only one vertex is exchanged during an 

iteration, which means that all but one of the terms in Equation 1.8 are zero except 

for a shrinkage. This stopping criterion inspired the one in Equation 1.7. 
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1.4.2    Implementation Details 

Aside from the different stopping criteria that have been offered, variations 

of the Neider-Mead algorithm in the simplex update stage can be found in the various 

computer implementations. Some of these variations may have resulted from a 

simple misunderstanding of the rules given by Neider and Mead. For example, in 

the appendix to Thompson (1989) titled "A Simple Optimization Algorithm that 

Usually Works" the rule for a contraction uses Xi instead of xcentro»d. However, 

most of the following variations have been argued as improvements to the original 

algorithm. This section relies heavily on notes provided by Dr. Russell Barton who 

has investigated these variations in computer implementations. 

One of the most widely implemented variation involves the acceptance test 

for an expansion. In the original algorithm xexpand replaces xn+i if yexpand < V\ 

(given y re fleet < V\ of course). We denote this rule as AE1. Instead, others have 

proposed that xexpand replace xn+1 if yexpand < yreflect < Vi, which we denote as rule 

AE2. One of the implementations using this stricter acceptance test (AE2) is The 

Sequential Simplex Program for Solving Minimization Problems by Olsson (1974). 

His code relies heavily upon Algorithm AS 47 by O'Neill (1971). Benyon (1976) 

offered the stricter acceptance test as a correction to Algorithm AS 47. Actual 

errors in the coding of AS 47 were found and corrected by Chambers and Ertel 

(1974) and Hill (1978). Other implementations using the stricter acceptance test for 

an expansion include IMSL routines U3POL and DU3POL, NAG routine E04CCF 

mark 13 revised 4/88, STATLIB 47 routine nelmin, and Indiana University QCPE 

program 307: STEPIT: simplex 2.9 June 1975. 

Another variation to the original algorithm involves the acceptance test for 

a contraction. In the original algorithm a contraction is accepted if yCOntract < J/n+i 
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(given y re fleet > Vn of course), which we denote by rule AC1. Some require that 

Vcontract be strictly less than yn+i to accept the contraction (AC2). Implementations 

using rule AC2 include NAG routine E04CCF and a routine in Numerical Recipes. 

A still stricter acceptance test for a contraction is to replace xn+i with xcontract if 

ycontract < J/n (AC3). That is, the new point must have a function value strictly less 

than the current second highest value in the simplex. Under the original rule (AC1) 

and the former stricter acceptance test (AC2) a contraction may result in a new worst 

point (i.e. ycontract > 2/n)- Therefore, xcontract becomes xn+1 (the new worst point) 

and it will be replaced at the next iteration. Some of the implementations using 

rule AC3 include Dennis and Woods (1987) and the MATLAB routine nelder.m. 

Each of these stricter acceptance rules—AE2, AC2 and AC3—have the 

effect of speeding up the convergence of the sequence of simplices to a limit point. 

Rule AE2 results in fewer expansions, and rules AC2 and AC3 result in more shrink- 

ages than in the original algorithm. We use the stricter acceptance rule AE2 for 

all our research into the Nelder-Mead algorithm to simplify our analytical results 

presented in Chapters 3 and 4. 

1.5    The Initial Simplex in 3£n 

One practical problem in using a simplex method is determining the lo- 

cation of the vertices for the initial simplex. One such starting simplex would be 

to locate one vertex at the origin and another at a unit's distance along each of 

the coordinate axes of the parameter space. However, the choice of a good starting 

location can greatly improve the performance of the algorithm. Therefore, prior 

knowledge or preliminary experiments may suggest a location far from the origin 
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for the starting location. In that case the initial simplex could be translated to a 

new starting location. Furthermore, the above procedure does not yield a regular 

simplex as the length of any edge not connected to the origin will not have unit 

length. Spendley et al. (1962) provide formulas for generating a regular simplex of 

unit edge length with one vertex at the origin. The formulas given below allow the 

practitioner to specify the edge length and location of the center of mass for the 

starting simplex. Let d be the edge length and let c be the location of the center of 

mass. Then define the coordinates of the first vertex using Equations 1.9 - 1.11. 

Mi) = CO)-"*';-1'-* (1.9) 
n + 1 

where j = 1,..., n and 

Then the remaining vertex coordinates are defined by Equation 1.12. 

x,(i)   =   Xi(j) + < (1.12) 
p   if j = i — 1 

q   if j ^ i - 1 

where i = 2,..., n + 1 and j = 1,..., n. The resulting simplex will be regular with 

edge length d and center of mass at c. 

1.6    Extensions for Deterministic Optimization 

In Section 1.4.2 we reviewed minor changes to the rules for accepting var- 

ious operations in the Nelder-Mead simplex algorithm.  In this section we review 
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some of the more interesting and significant extensions or improvements to the al- 

gorithm proposed by Neider and Mead. These extensions have been proposed to 

improve the performance of the Nelder-Mead algorithm on deterministic functions. 

Although we did not investigate the performance of these modified algorithms for 

stochastic optimization, we include a review of these algorithms for completeness. 

Many of these improvements have been suggested by those working in 

analytical chemistry, where the simplex method has been widely used since the 

publication of two articles by Deming and Morgan (1973, 1974), where the authors 

names are appear in reverse order in the latter article. They termed the Spendley 

et al. algorithm the sequential simplex method and the Nelder-Mead algorithm 

the modified simplex method. As a result, many authors now refer to the Nelder- 

Mead algorithm as the Modified Simplex Method (MSM), and some authors refer to 

Spendley et al.'s algorithm as the Basic Simplex Method (BSM). However, Deming 

and Morgan (1973) did not explicitly include the operation of shrinkage for the 

Nelder-Mead method; and therefore, many applications of MSM do not include a 

shrinkage operation. 

First, Routh, Swartz, and Denton (1977) proposed what they called the 

Super Modified Simplex (SMS) method. Their proposed improvement of the MSM 

(i.e. the Nelder-Mead algorithm) is a major modification eliminating the fixed 

step lengths and combining the reflection, contraction and expansion operations 

into a single step. Their algorithm evaluates the function at the centroid given by 

Equation 1.1 and evaluates the reflected point as in MSM. Then the algorithm fits 

a second-order polynomial to the points xn+i, xcentroid and xre//ect. In addition, 

the curve is extrapolated beyond xn+1 and xre//ec« by a percentage of the vector 

Xn+i — ^-reflect- The derivative of this polynomial is evaluated and the location of 
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the optimum value within this interval becomes the new vertex except if the new 

vertex is too close to the centroid, which would essentially terminate further progress 

in one or more dimensions. This safety restriction is lifted when approaching the 

termination of the search. They compared their algorithm to three slightly modified 

versions of the Nelder-Mead method which had been offered previously. These 

modified versions each included resampling of the best vertex when retained for 

n + 1 successive iterations. An additional modification was included in the second 

version where the second worst vertex was reflected if the function's value at the 

contracted vertex was the new worst vertex. The third version always accepts a 

contraction (i.e. no shrinkages). Their algorithm outperformed all three slightly 

modified versions of the Nelder-Mead algorithm in experimental tests. 

Van Der Wiel (1980) claimed a substantial improvement to the SMS algo- 

rithm in terms of decreasing the number of experiments (i.e. function evaluations) 

required, as in the optimization of parameter settings of an analytical instrument. 

All combinations of three modifications to the SMS algorithm were investigated us- 

ing five two-parameter response surfaces with no added noise. These modifications 

were the substitution of a Gaussian fit in lieu of the polynomial fit, a weighted 

centroid, and substitution of an estimate of the response at the centroid in lieu of 

an actual evaluation. The Gaussian fit and the estimated response at the centroid 

performed better than SMS both individually and in combination. The weighted 

centroid failed to improve SMS in any combination it appeared. Interestingly, the 

use an estimated response at the centroid was introduced again in the same journal 

by Parker, Cave, and Barnes (1985) without reference to Van Der Wiel (1980). 

Independently, Ryan, Barr, and Todd (1980) investigated a weighted cen- 

troid method (WCM) as a modification to MSM. The rationale behind a weighted 
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centroid is to obtain a better approximation to the gradient direction for a reflec- 

tion of the worst point. As reported by Van Der Wiel (1980), the weighted centroid 

method does follow the gradient direction more closely and shows an improvement 

over MSM in the first few iterations. However, closer approximation to the gradient 

direction results in more expansions during the early iterations resulting in a highly 

elongated simplex. This distortion later diminishes the ability of the simplex to 

search in directions orthogonal to the elongation. Contraction operations eventu- 

ally restore some degree of regularity to the simplex at the cost of wasted function 

evaluations and the convergence criteria may be met before the simplex can change 

direction. Two solutions are offered to the degeneracy problem which are termed 

controlled weighted centroid method (CWC) and orthogonal jump weighted cen- 

troid method (OJWC). Tests on functions suggest that both CWC and OJWC are 

initially better than MSM and SMS, but MSM performs the best near the optimum 

of the function. 

Van Der Wiel, Maassen, and Kateman (1983) investigated the problem of 

degeneracy of the simplex when using a weighted centroid method. The OJWC 

method of Ryan et al. (1980) uses the determinant of the simplex to detect degener- 

acy, but Van Der Wiel et al. demonstrate that it cannot be used to detect degeneracy 

because the determinant of the next simplex is independent of the centroid, weighted 

or not. They propose using a measure of the symmetry of the simplex to restrict 

the coefficient for expanding the simplex determined by the Gaussian or polynomial 

fit procedure. The measure of symmetry is the nth root of the absolute value of the 

determinant divided by the radius of the sphere passing through all vertices of the 

simplex which is scaled by the number of parameters to yield a value in the range 

from 0 to 1. A regular simplex has a symmetry of 1. With this control the safety 
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interval around the centroid is unnecessary except when the symmetry falls below 

a specified level resulting from a boundary violation. Empirical optimization of the 

symmetry criterion yielded an optimal value of about 0.5 independent of the noise 

level. 

Silver (1981) suggested that more significant improvements to algorithms 

with geometric interpretations may be found by altering the space rather than the al- 

gorithm. That is, he suggests translating an algorithm to non-Euclidean hyperbolic 

space which holds the prospect of avoiding problems with speed of convergence and 

false convergence resulting from plateaus in the response surface. These problems 

are related to the path of convergence of an algorithm. Within Euclidean space, the 

path of convergence can be changed by changing starting positions for the search 

algorithm or by changing the geometric rules of the algorithm. The former is in- 

convenient in experimental studies and the latter has not resulted in significant 

improvements. However, different convergence paths can be obtained in hyperbolic 

space with the same starting position by varying the metric constant. He discusses 

how such a translation of the Nelder-Mead simplex algorithm to non-Euclidean space 

can be made, but references other sources for many of the details. However, there 

is as yet no method for determining what value of the metric constant is best for a 

particular objective function. 

In two articles Betteridge, Wade, and Howard (1985a, 1985b) present an- 

other simplex algorithm and the results of comparative evaluations with 8 other sim- 

plex algorithms including BSM, MSM, SMS, CWC, and OWJC. They call their algo- 

rithm the composite modified simplex method (CMS). The CMS algorithm uses an 

adaptive weighted centroid that approaches the unweighted centroid of the Nelder- 

Mead method as the response values become close together (as in the region of the 
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optimum). It also discards the shrinkage operation and uses the strict acceptance 

rule for an expansion. Additionally, the CMS algorithm incorporates a Lagrange 

polynomial fit whenever a failed expansion or a successful contraction occurs indi- 

cating that an optimum lies within the interval of the current simplex. It includes 

a safety interval to prevent accepting the new point too close to the centroid as in 

the SMS algorithm of Routh et al.. 

Next, Smith (1986) offered a modified algorithm that moves more directly 

down a slope than the Neider-Mead algorithm. This algorithm reflects a high cen- 

troid (average of all but the best point) through a low centroid (average of all but the 

worst point, which is identical to the Neider-Mead centroid). If the reflected point's 

value is the best, then an extension (or expansion) is attempted. If the extended 

point's value is better than the reflected point's value, then the extended point be- 

comes the reflected point and an extension is repeated until the extended point's 

value is no longer an improvement over the reflected point's value. His method 

can save many iterations over the Nelder-Mead method if the path from the initial 

starting simplex to the optimum is not severely curved, particularly in cases where 

there are a large number of parameters. However, the price for its directness is an 

increase in computation time and memory. 

A simplex algorithm by Cheok, Hu, and Loh (1988) uses the strict accep- 

tance rule for an expansion, and if successful, takes the expanded point as a new 

initial point and begins the simplex search with a new simplex around this expanded 

point. They claimed superior performance of this algorithm for their application to 

identification of parameters of a simulated servomotor system with stick-slip friction. 

Marsili-Libelli and Castelli (1987) provided another simplex algorithm and 

claimed it outperforms the Nelder-Mead simplex algorithm. Theirs substitutes a uni- 
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directional optimal search algorithm for the fixed step-length reflection. Therefore, 

there is no longer any distinction between a reflection and an expansion. Instead 

they perform a line search along the direction from the worst vertex through the 

centroid of the remaining vertices using the Fibonacci interval elimination method. 

Obviously, the number of function evaluations is increased whenever an expansion is 

performed. However, their algorithm results in fewer but more efficient expansions. 

Their empirical studies show a savings in the number of iterations yielding a smaller 

number of total function evaluations for the new algorithm, particularly when the 

minimum lies at the bottom of a narrow "valley" in the parameter space. 

Finally, Subrahmanyam (1989) proposed a better way to handle inequal- 

ity constraints when using the Neider-Mead simplex algorithm than the traditional 

approach of setting the function value at an infeasible point to some large value. 

Equality constraints can be converted to inequality constraints. Using the tradi- 

tional approach the algorithm is likely to terminate prematurely when a boundary is 

reached especially when the feasible region is nonconvex. Subrahmanyam proposed 

what he terms a delayed reflection. If a vertex becomes infeasible, its function value 

is not increased until the next iteration is completed. 

1.7    Known Convergence Results 

Although the Nelder-Mead simplex method is easy to implement and has 

gained widespread acceptance for minimizing a function, very little is known about 

its convergence properties. The term "convergence" with respect to the Nelder-Mead 

method has had two distinct meanings: (1) convergence of the simplex to a single 

point, or set of points with equal function values; and (2) convergence of a convex 
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combination of the function values to the optimal function value. Presumably one 

would hope that if the simplex were to converge to a single point, that this point 

would be the optimizer of the function, but that is not necessarily true. 

Woods (1985) presents preliminary convergence results for a slightly mod- 

ified Nelder-Mead algorithm employing a stricter acceptance rule for an expansion 

of the simplex (see Section 1.4.2). Under appropriate conditions, he proves conver- 

gence of the simplex to a connected set of limit points, but did not establish any 

properties for the limit point x*, e.g. V/(x*) = 0. After working on a proof of 

convergence, Dennis (1994) now believes that the results obtained by Woods may 

be all one can say analytically about the algorithm's convergence. In fact, Dennis 

and Woods (1987) provide an example for which a slightly modified Nelder-Mead 

algorithm does not converge to the minimizer of a strictly convex function. 

Recently, Torczon (1993) established a global first-order stationary point 

convergence theory for a subclass of the heuristic direct-search methods that she 

termed "pattern-search" methods. This subclass includes her multidirectional search 

algorithm (Torczon, 1991; Dennis & Torczon, 1991), response surface methodology 

(Box & Wilson, 1951) and the Hooke and Jeeves' pattern search method (Hooke & 

Jeeves, 1961). However, the Nelder-Mead algorithm does not meet the definition 

of a "pattern-search" method. Furthermore, there does not appear to be a way to 

modify her proof so as to incorporate it either. 

Barton (1980) compared properties of convergence to the optimizer of four 

search methods on univariate functions with noise. These methods were Spend- 

ley et al.'s simplex method, two modified versions of the simplex method and the 

stochastic approximation method of Kiefer and Wolfowitz (1952). One of the mod- 

ified simplex methods, termed the double simplex method, involves resampling the 
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two vertices following a movement of the simplex to allow for a homogeneous Markov 

process on a linear function contaminated by noise. The other modified version, 

termed the variable step simplex method, decreases the length of the simplex (i.e. a 

line segment) with a corresponding increase in the number of samples at each vertex 

as the optimum is approached. This version prevents a decrease in the signal-to-noise 

ratio as the function levels off near the optimum. Empirical results demonstrate that 

the rate of convergence for the Kiefer and Wolfowitz method make it impractical 

if the starting values are far from the optimum, even though the method is guar- 

anteed to converge with probability one. The double simplex method demonstrates 

better performance than the simplex method when the noise is large. While the 

variable step simplex method was the most robust its efficiency is less than that of 

the preceding two methods. However, "it does well on more kinds of problems in a 

'reasonable' number of observations than do the others" (p. 16 Barton, 1980). 

More recently, Barton and Ivey (1993) empirically tested the stochastic 

convergence of several variants of the Nelder-Mead algorithm. All of the methods 

tested exhibit the phenomenon of converging to a false optimum, which they termed 

"premature convergence," when noise is present. That is, the simplex method is 

subject to false moves when the signal—a function of the magnitude of the gradient 

of the response in the region of the simplex and the size of the current simplex—is 

small with respect to the noise. A reflection or expansion signaled by noise is not 

a problem as the algorithm is somewhat self-correcting. However, a contraction 

or a shrinkage signaled by noise only serves to increase the effect of the noise at 

the next iteration. In fact, a shrinkage of the simplex (using the usual coefficient 

of 1/2) results in a decrease in the volume of the simplex by a factor of (l/2)n. 

Therefore, a simplex may shrink prematurely, which is a signal that an optimum 
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has been located; but, if the true function were not obscured by noise, then the 

simplex would have continued to make progress toward a true optimum. Thus, the 

algorithm is said to have converged prematurely. 

1.8    Overview 

The goals we set for our research included a theoretical proof that the 

simplex of the Nelder-Mead method converges to a point on stochastic functions; 

and that there is a positive probability that this point is not the optimizer of the 

function. Secondly, we set out to develop a modified simplex method with better 

performance characteristics on stochastic functions. 

In Chapter 2 we review several journals for applications of Nelder-Mead 

in both deterministic and stochastic settings. In Chapter 3 we present a proof that 

the Nelder-Mead simplex converges to a point on stochastic functions with con- 

stant expectation in one and two dimensions. In Chapter 4 we use Markov chain 

theory to demonstrate that the Nelder-Mead simplex converges to a point on a one- 

dimensional unbounded stochastic function with linear expectation. This analysis 

is followed by our proposed modified method for univariate stochastic optimization. 

In Chapter 5 we report the results of an experiment designed to compare the perfor- 

mance of our modified simplex method with Nelder-Mead, another modified simplex 

method and the Kiefer-Wolfowitz stochastic approximation method. In Chapter 6 

we develop extensions for our modified method to n dimensions; and finally, we re- 

port the test results of two implementations of our modified method on multivariate 

stochastic functions. 



Chapter 2 

Applications and Motivation 

To motivate the purpose of this research we review several articles pub- 

lished in recent years that report using a simplex algorithm in an applied problem— 

most of these used a slightly modified version of the Neider-Mead simplex algorithm. 

This review is by no means exhaustive as "there have been over 2000 citations to 

the original paper ... [with] applications ... from physics to biology to manufactur- 

ing process optimization" (Barton &; Ivey, 1993). We present the review of these 

articles in science and technology to demonstrate the use of the Nelder-Mead sim- 

plex algorithm as an optimization technique with wide applicability to nonlinear 

optimization problems both in a deterministic setting and in the presence of noise. 

Having impressed upon the reader the widespread use of the Nelder-Mead simplex 

method, and its use for stochastic optimization in particular, leads naturally to the 

motivation for this research into its stochastic convergence properties. 

2.1    The Nelder-Mead Method and Curve Fitting 

Many investigators have used the Nelder-Mead algorithm to minimize a 

sum of squared residuals function as a nonlinear least-squares curve fitting technique. 

A paper by Caceci and Cacheris (1984) titled "Fitting Curves to Data: The Simplex 

Algorithm is the Answer" is cited in many of the papers mentioned below. One 

major shortcoming of many implementations of the Nelder-Mead simplex algorithm 

when used for curve fitting is that error estimates of the fitted parameters are 

not provided. This is addressed by Caceci and Cacheris who suggest using a Monte 
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Carlo simulation approach to perturb the final parameter estimates using a Gaussian 

distribution with mean zero and standard deviation given by their program called 

Simp. They suggest generating a sufficiently large number of simulated experimental 

point sets and then re-running their simplex algorithm implementation on each of 

these sets. The standard deviation of a fitted parameter is estimated by the sample 

standard deviation of the final parameter estimates from these multiple runs. 

Another approach to error estimation of the fitted parameters is addressed 

by Phillips and Eyring (1988). They implemented a proposal in an appendix to the 

original article by Neider and Mead for constructing an estimate of the curvature 

matrix of second derivatives at the minimum without the evaluation of derivatives. 

They propose a new criterion for protecting against a lack of curvature across the 

final simplex due to unnecessarily strict stopping criteria. If the curvature criterion 

is not met, then the final simplex is expanded by doubling the distance between 

the centroid and each vertex and the criterion is checked again. Although it is 

natural to think of noise when least-squares curve fitting is mentioned, this is not a 

stochastic application of the Nelder-Mead simplex algorithm. Once the data have 

been obtained, the fitting of these data to a curve is completely deterministic. Next 

we review some of the many deterministic applications that have appeared in the 

literature followed by a review of some of the stochastic applications. 

2.2    Deterministic Applications 

There are many references describing the use of the Nelder-Mead method 

for deterministic applications in chemistry. The use of Nelder-Mead in analytical 

chemistry is largely credited to Deming and Morgan (1973).   In this paper they 
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illustrate its utility as a least-squares curve fitting technique. In another paper 

Morgan and Deming (1974) use the Nelder-Mead simplex method to optimize the 

multivariate response surface of the manual colorimetric method of Carr and Drekter 

for determination of total cholesterol in the blood. Deming and Parker (1978) 

provide a review of simplex optimization in analytical chemistry through 1976. None 

of those applications are reviewed here except the two already mentioned above. 

Instead we review some of the more recent applications of Nelder-Mead that have 

been published. 

In one such application, Busing and Matsui (1984) offered the Nelder-Mead 

simplex algorithm as an alternative to the Newton-Rhapson method for solving the 

minimum energy structure of a crystal. A mathematical model of the crystal struc- 

ture incorporating the application of external forces is simulated and minimized, 

but the simulation is deterministic. 

Burgess and Hayumbu (1984) used the Nelder-Mead simplex method to 

locate the optimal values for four parameters in a trace element determination tech- 

nique known as neutron activation analysis. The simplex optimization was applied 

to a response function generated from experimental data. (A stochastic application 

would require the experiments to be guided by the simplex optimization). Later, 

Burgess (1985) extended this work to the determination of multiple trace elements 

in a single sample. 

Rhines and Arnold (1988) reported the use of multiple indicators in a fiber- 

optic ammonia-gas sensor for the first time. The primary goal of their investigation 

was to develop a practical optimization strategy for selecting multiple indicators for 

a fiber-optic sensor. A sensor response function is optimized by a simplex method 

for the indicator solution to identify the best combination of two indicators. 
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Jang and Rajeshwar (1988) used the Nelder-Mead simplex method in con- 

junction with computer simulation to investigate the influence of thermal resistances 

on the peak resolution of a thermogram produced by a differential scanning calorime- 

try cell. Differential thermal analysis is a technique for identifying and quantitatively 

analyzing the chemical composition of substances by observing the thermal behav- 

ior of the sample as it is heated. The Nelder-Mead simplex method was used to 

determine the values of the parameters for successive simulation runs. However, the 

simulation appears to have been completely deterministic using differential equa- 

tions. 

A curve-fitting application in ellipsometry, a technique for studying film 

growth in electrochemical systems, is given in a paper by De Smet and Ord (1989). 

Also, the minimization of the sum of squared residuals for the problem of source 

location of an earthquake can be found in papers by Rabinowitz (1988), and Prugger 

and Gendzwill (1988). Vance, Hassani, and Mottahed (1988) use the Nelder-Mead 

simplex algorithm to minimize the sum of absolute deviations for the earthquake 

source location problem. Still another approach to this problem using the Nelder- 

Mead simplex algorithm is found in a paper by Prothero, Taylor, and Eickemeyer 

(1988). Other curve-fitting applications of the Nelder-Mead simplex algorithm in- 

clude the calibration of seismometers (Steck fc Prothero, 1989), the calculation of 

fluid-mineral equilibria (Wood, 1993), and the material properties of bonds and 

composite laminates (Karim & Mai, 1990). 

All of the applications of the Nelder-Mead simplex algorithm in this section 

are deterministic applications even though many involve experimental data. Our 

research interest is in the performance of the Nelder-Mead method on stochastic 

objective functions arising for example, from laboratory experiments or simulation 
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experiments. In this setting, the Nelder-Mead algorithm generates the parameter 

values for the next run of the experiment. The response cannot be known precisely 

due to process variation, measurement error, or simulated noise. 

2.3    Stochastic Applications 

A method for determining the amount of calcium in the blood was inves- 

tigated by Olansky, Parker, Morgan, and Deming (1977) using the Nelder-Mead 

simplex method to optimize reagent concentrations. That is, the simplex method 

was used under experimental conditions to determine the concentrations of reagents 

to optimize three objectives for the serum calcium determination. The objectives 

included in the simplex optimization were to maximize calcium sensitivity while 

minimizing magnesium sensitivity and protein sensitivity and were combined into a 

single objective function. 

Rainey and Purdy (1977) used a modified simplex method to experimen- 

tally optimize the volumes of solvent components to separate the peaks in a chro- 

matogram of a mixture of other components. The volumes of solvent components 

were generated by the rules of the Nelder-Mead simplex algorithm and the response 

was obtained by a laboratory experiment. 

Ebdon, Cave, and Mowthorpe (1980) employed the Nelder-Mead simplex 

algorithm to maximize the signal-to-background ratio of different plasmas for optical 

emission spectrometry over five operating parameters: the power in the plasma, the 

observation height, the injector, and plasma and coolant gas flow rates. The rules 

of the algorithm were used to generate new settings for these parameters to search 

for the largest signal-to-background ratio. 
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Ibarra and Lazaro (1985) described using a modified Nelder-Mead simplex 

method to determine the settings for three significant variables in successive experi- 

mental trials involving the sulfonation of coal for use in water treatment technologies. 

The three variables were temperature, reaction time, and the ratio of sulfonic acid 

(volume) to coal (mass). The published ranges of these variables for coal sulfonation 

were scaled to a 0-1 scale and an initial regular simplex with unit edge lengths was 

used to determine the variable settings for the first four experiments. 

Mass spectrometry, or mass spectroscopy, denotes a field of physics in 

which the motion of ions (charged atoms, molecules or fragments of molecules) in 

electric and magnetic fields is used to sort ions according to their mass-to-charge ra- 

tios. A mass spectrometer is an instrument that uses electricity to detect ions. One 

such device is known as a Fourier transform ion cyclotron resonance (FT-ICR) mass 

spectrometer, which is capable of obtaining very high resolution mass measurements 

in the narrow band mode. A problem associated with these measurements is the 

requirement for extremely precise and time-consuming instrument tuning to obtain 

the maximum resolution possible. The problem arises from a large number of depen- 

dent instrument parameters that must be manipulated in the tuning process, which 

are highly specific for the ion signal being observed. Elling, de Koning, Pinkse, and 

Nibbering (1989) introduced a formal optimization of FT-ICR instrument tuning 

using the Nelder-Mead simplex method. Previously, "the most successful operators 

have tuned by intuition developed by long experience, often using only a subset of 

the relevant parameters. Even with such experience the day to day tuning results 

are not always reproducible" (Elling et al., 1989, p. 330). 

Lawitts and Biggers (1991) applied the Super Modified Simplex algorithm 

of Routh et al. to the optimization of mouse embryo culture media composed of 10 
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components. A concentration was chosen for each component to define the initial 

medium from which 10 other media were generated. These 11 media defined the 

vertices of the initial simplex. The media yielding the worst response was identified 

experimentally. The next media to be tested was identified by the simplex algorithm 

(a reflection of the worst vertex), etc. This simplex procedure identified four com- 

ponents which at high concentrations are detrimental to embryo development (as 

the concentrations of these media were greatly reduced in the new media generated 

by the simplex optimization). 

The minimization of a weighted objective function of multiple economic 

criteria for a machining operation is accomplished experimentally using the Nelder- 

Mead simplex algorithm in a paper by Agapiou (1992). For simplicity and purposes 

of being able to visualize the response, only two variables—cutting speed and feed 

rate—were considered for optimization. 

Finally, a problem for astronomers is the alignment of segmented mirrors 

in large optical telescopes in the presence of atmospheric turbulence. Mehta and 

Allen (1993) present computer simulations and experimental results which demon- 

strate the utility of a remote method for aligning a segmented mirror known as 

far-field optimization. This technique utilizes the Nelder-Mead simplex algorithm 

to minimize the residual phase error in the presence of static or dynamic turbulence. 

The applications reviewed in this section are stochastic applications of 

modified simplex algorithms based on the algorithm of Neider and Mead. The 

number of stochastic applications of the Nelder-Mead simplex algorithm is likely to 

increase as the use of this technique finds its way to other disciplines. 
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2.4    Motivation for this Research 

As one can see from the preceeding list of applications, the simplex method 

of Neider and Mead has become a widely used tool for nonlinear optimization prob- 

lems. In fact, it is "the most popular direct-search method based on published 

applications ..." (Barton & Ivey, 1993). The efficiency and simplicity of the Nelder- 

Mead simplex algorithm has made it a very popular choice among practitioners. 

However, some of the claims of convergence for this algorithm are misleading. Some 

of these misleading remarks from the articles cited above include: "this method ... 

always converges" (Prothero et al., 1988, p .1190); "The simplex algorithm always 

converges to a minimum, regardless of starting model, ..." (Steck &; Prothero, 1989, 

p. 1618); and "Divergence is impossible" (Caceci & Cacheris, 1984, p. 344). Tradi- 

tionally, "convergence" of an iterative nonlinear optimization technique means that 

the algorithm will locate the global optimum (or a local optimum) under specified 

conditions in the limit as the number of iterations is allowed to go to infinity. 

The only known proof of convergence, which is for a slightly modified 

Nelder-Mead algorithm, is the one provided by Woods (1985) which we discussed 

in Section 1.7. Since all simplex operations in the Nelder-Mead algorithm retain 

the current best vertex, the method cannot diverge to infinity in the parameter 

space unless the objective function is unbounded below (for minimization). This is 

probably what is meant by the above claims that the method cannot diverge (unlike 

the Newton-Rhapson method when the intial guesses for the parameters are too far 

from the optimal values). However, even a proof that Nelder-Mead converges to 

the optimum under deterministic conditions would not guarantee its performance 

in stochastic optimization. 
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Our research into the convergence properties of Neider-Mead on stochastic 

functions is motivated by its practical application in this setting. Our first goal 

is to provide the practitioner with an understanding that experimental noise may 

result in the algorithm terminating at a "false optimum." Along with providing the 

practitioner with an understanding that this problem exists, we also seek to provide 

a basis for determining how serious this problem can be for a general nonlinear 

function. We do this by investigating the phenomenon of false convergence in the 

presence of noise on linear functions, since a linear function is a first-order local 

approximation of the general function in the region of the simplex. Finally, we have 

endeavored to discover a better simplex algorithm which would lessen the severity 

of the false convergence phenomenon while maintaining the relative advantages of 

the Nelder-Mead method. 



Chapter 3 

Convergence on Stochastic Functions with Constant Expectation 

As noted earlier in Chapter 2, the Neider-Mead simplex method has found 

widespread acceptance in the optimization of stochastic functions as well as deter- 

ministic functions. Researchers often choose the Neider-Mead algorithm for two very 

practical reasons: (1) no assumptions about the objective function or its derivatives 

are needed; and (2) the algorithm's conceptual simplicity makes it easy to under- 

stand and program. Even though it was originally designed with deterministic 

functions in mind, it is robust with respect to small perturbations in the function's 

values. 

As Barton and Ivey (1993) have noted, the Nelder-Mead method relies 

solely on the ranks of the vertices based on the function's values. Therefore, small 

perturbations that do not affect these ranks have no effect on the algorithm's search 

trajectory. However, if the perturbations in the function's values are large enough 

to affect the relative ranks of the simplex vertices, then an incorrect pivot choice 

may be made. For example, the simplex may shrink when the correct action may 

be to reflect. The factors affecting the relative ranks of the simplex vertices on 

a stochastic function include the magnitude of the noise, the size and shape of 

the current simplex and the magnitude of the gradient of the function in the local 

region of the simplex. When an incorrect shrinkage occurs due to noise, the noise 

will have an even greater effect on the relative ranks at the next iteration because 

the simplex is now smaller (assuming that the function is locally convex). A smaller 

simplex means that the differences in the function's expected values are smaller, 
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which allows the noise to play a more dominant role in determining the relative 

ranks of the vertices. Such a situation can lead the algorithm to converge at a point 

that is not the true optimum. 

In this chapter we prove that the algorithm converges with probability one 

(w.p. 1) when applied to a function of 1 or 2 parameters where random noise is the 

only factor affecting the relative ranks of the points in the simplex. By convergence 

we mean that a subsequence of the sequence of simplices converges to a single point; 

that is, 

limSfc   =   {x*,...,x*}. 
k—>oo 

Additionally, we prove that the shrinking of the simplex is sufficiently fast enough 

to guarantee that the distance the simplex traverses in the parameter space is finite. 

We suspect that this is the case in higher dimensional parameter spaces as well and 

provide some empirical evidence to support this conjecture. 

We assume an unknown stochastic function / : 9£n —* 3ft, with con- 

stant expectation and noise component having a continuous distribution indepen- 

dent of the location of the simplex in the parameter space. Symbolically, we write 

/(x) = g(x) + W(x), where g(x) = c (a constant) and W(x) = W is a random 

variable with a continuous distribution. Since the function's values are indepen- 

dent identically distributed (iid) random variables, we will denote them by Y{. We 

assume a continuous distribution to avoid the possibility of two points in the param- 

eter space having the same function value. Also, repeated observations at the same 

point in the parameter space will yield different realizations. To further simplify our 

calculations we assume independence for the function's values at the vertices of the 

simplex across iterations. This can be achieved by resampling the vertices at the 

beginning of each iteration. 
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3.1     Diameter of a Simplex 

We define the size of a simplex to be the length of its longest edge. This 

measure of simplex size was chosen by Hensley, Smith, and Woods (1988) for their 

analysis of simplex distortions under repeated reflections. Formally, Hensley et al. 

define the size of the simplex S = {xj, • • • ,xn+i} to be the diameter of this set of 

points, which is defined as 

d(S)   =       max     ||x;-x,||. (3.1) 
0<i<i<«+l " ■"' 

Since the actual position of the simplex at any future iteration is a random variable, 

we define the size of the simplex at the end of the kth iteration to be the random 

variable Dk defined by Equation 3.2 below: 

Dk   =   d(Sk). (3.2) 

We chose this definition of simplex size because of its conceptual simplicity 

and the knowledge that convergence of the length of the longest edge to zero implies 

convergence of the simplex to a single point. We considered the volume of the 

simplex as the measure of simplex size; however, proving the volume of the simplex 

converges to zero does not imply that the simplex has converged to a single point. 

For example, if the simplex collapses in only one dimension so that it is contained in 

an (n — l)-dimensional subspace of 3ftn, then the volume of the simplex in 3ftn would 

be zero. And yet, the simplex would not be a point; therefore, it could continue to 

move within that subspace of the parameter space. 
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3.2    Effect of Simplex Operations on Simplex Size 

In order to prove that the size of the simplex in the Neider-Mead algorithm 

converges to zero we need to understand how each of the simplex operations affects 

it. In the case of a simplex expansion or a simplex contraction, the length of the 

longest edge may not change. This is more likely to happen when n is large as each 

of these operations replace only one vertex. The exchange of one vertex affects n 

edges, whereas the total number of edges is given by 

YJn + \-i)    =    2^    =     7y • 

Therefore, the exchange of one vertex during an expansion or a contraction may not 

affect the size of the simplex as we have defined it in Equation 3.1. 

In contrast, a shrinkage always affects the size of the simplex by a factor 

equal to the shrinkage coefficient, 8, which is usually set to 1/2. This is obvious 

when one of the endpoints of the longest edge is the vertex with the best function 

value. Since all other vertices are moved closer to Xi by a factor of 8, then the 

longest edge will be shortened by this factor 8. Moreover, the longest edge will be 

shortened by this same factor even if Xi is not one of its endpoints. Suppose the 

two endpoints for the longest edge in the simplex are x,- and Xj where i ^ j' ^ 1. 

Then Xi,xt-, and Xj form a triangle in a subspace of dimension 2. If ||x,- — Xi|| and 

||Xj — Xi|| are shortened by the factor 8, then by appealing to an argument using 

similar triangles ||x,- — Xj|| is shortened by the factor 8, too. 

Finally, although a reflection does not affect the volume of a simplex, it 

can distort the shape of a nonregular simplex in 3£n for n > 3. This distortion can 

cause the simplex size (Equation 3.1) to grow under repeated reflections. Hensley 

et al. (1988) prove that this growth is bounded; their theorem is repeated here. 
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Theorem 1 (Hensley-Smith-Woods) Let S denote a nondegenerate simplex in 

•R" with n > 3. Let Sk denote the result ofk simplex reflections applied successively 

to S.  Then 

d(Sk) 
d(S) 

<    < 

n + 1 

n(n + 2) 

if n odd; 

if n even. 
\2(n + iy 

Furthermore, this result is sharp in the sense that given any e > 0 there exists a 

simplex S and a sequence of k reflections (for some k) so that 

d(Sk) 
d(S) 

> < 

/n + 1 
- e, 

n(n + 2) 
-e, 

ifn odd; 

if n even. 
\ 2(n + 1) 

The bounds given in Theorem 1 are upper bounds on the amount of increase 

in the size of the simplex resulting from repeated reflections which are expressed as 

a fraction of the starting simplex size. Since any sequence of simplex reflections 

could be reversed, the multiplicative inverse of these bounds establish lower bounds 

for the amount of decrease in the size of the simplex as a fraction of its starting size 

due to repeated reflections. 

Since a reflection can affect the size of the simplex and every iteration of 

the Neider-Mead algorithm begins by evaluating a reflection of the worst vertex, 

we further divide a simplex interation into two halves. During the first half of an 

iteration xre//ec« is located using Equation 1.2 and it replaces the vertex xn+i if it has 

a better function value (where better means lower if we are minimizing the function). 

Suppose xrefiect does have a better function value; then during the second half of 

the iteration, the new vertex xrefiect may be expanded, left alone, contracted, or the 
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whole simplex may be shrunk. On the other hand, if xn+i is not replaced by xre//ec«, 

then the only possiblities for the second half of the iteration are a contraction of 

this vertex or a shrinkage of the simplex. 

We define the variable a^ to be the fractional change in size of the simplex 

during the first half of the kth iteration. If we let Sfc_2 denote the simplex after the 

first half of the kth iteration, then 

ak = l(s^)- (3-3) 

Next, we determine an upper bound on the fractional change in simplex size for each 

operation during the second half of the kth iteration. A least upper bound could be 

determined using the dimension size; however, this is not required for our proof of 

simplex convergence. Instead, these upper bounds apply to all dimensions n. We 

define pk to be the random variable on this finite space of upper bounds which is 

summarized in Equation 3.4. 

Pk 

2 expansion 

1    :    reflection, failed expansion, or contraction (3-4) 

0.5    :    shrinkage 

Given a simplex operation and this finite space, pk satisfies the inequality of Equa- 

tion 3.5, which we prove in Section 3.3. 

d(Sk) 
P>   *   -£Hr- (3-5) 

3.3    Determining the Values for pk 

Determining the smallest value for pk which satisfies Equation 3.5 inde- 

pendent of the current shape of the simplex is an easy exercise except for a simplex 
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expansion which we devote to a separate section. Note that when an attempted 

contraction fails in the univariate case (n = 1), there is only one point to shrink 

because the simplex consists of only two points. And, the new vertex is the same 

point as the contracted point. Therefore, we say that a contraction cannot occur 

when n = 1 as the resulting new vertex will be the same regardless of its function 

value. Instead, a contraction is counted as a shrinkage when n = 1. 

3.3.1 pk for Reflection, Contraction and Shrinkage 

Since a reflection is completed during the first half of an iteration, o^ 

accounts for any change in size resulting from a distortion of the shape. Therefore, 

pk = 1 given a reflection during the kth iteration. Note that a failed expansion 

results in the same simplex as a reflection. 

Assuming the usual value of 0.5 for the contraction coefficient, a contraction 

of a simplex in 9ft" when n > 1 will not decrease the size of the simplex if the worst 

vertex is not an endpoint of the longest edge. In this situation, the size remains 

unchanged. Therefore, pk = 1 given a contraction occurred during the kth iteration. 

Finally, as we have already discussed, a shrinkage will cause the size of the 

simplex to decrease by a factor equal to the shrinkage coefficient. Assuming the 

usual value for the shrinkage coefficient, S = 0.5, pk = 0.5 given a shrinkage during 

the kth iteration. 

3.3.2 pk for Expansion 

Assuming 7 = 2 (where 7 is the expansion coefficient), an expansion of a 

simplex in dt1 (i.e. a line segment) will cause a doubling of the size of the simplex. 

Furthermore, 2 is the smallest possible value independent of the current simplex 
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Figure 3.1: Expansion of Simplex in !R2 

shape for the fraction of increase in the size of the simplex resulting from an ex- 

pansion in higher dimensions as well. In fact, this bound cannot be attained for 

nondegenerate simplices in higher dimensions. First, consider the case where n — 1 

and refer to the illustration in Figure 3.1 for the following discussion. Let the trian- 

gle formed by the points a, b, and c be the current simplex in 3£2 which we denote 

by Aabc. The longest edge of this triangle is ab and the worst point of the tri- 

angle is a. The centroid of vertices b and c is /. A reflection results in the new 

simplex Agbc where gc has the same length as ab. An expansion results in the 

new triangle Adbc with longest edge dc. By the following geometric argument we 

demonstrate that \\c — d\\ < 2\\a — b\\. Note that an expansion doubles the dis- 

tance between the worst point and the centroid of the remaining points. Therefore, 

||/ — d\\ = 2\\a — f\\ = 2\\f — g\\. Now consider the two right triangles Aceg and 

Aced. By the Pythagorean Theorem we have the following relationships: 

|c-0||2   =   ||c-e||2 + ||e-5||2 



39 

=    ||c-c||» + (||e-/|| + ||/-if||)a 

=   ||c - e||2 + ||e - /||2 + 2||e - /||||/ - g\\ + ||/ - ^||2.        (3.6) 

||c-42   =   ||c-e||2 + ||e-42 

=   ||c-e||2 + (||e-/|| + ||/-<*||)2 

=   ||c-e||2 + (||e-/||+2||/-<,||)2 

=   ||c - e||2 + ||e - /||2 + 4||e - /|| ||/ - g\\ + 4||/ - ^||2.      (3.7) 

Therefore, by Equations 3.6 and 3.7 we have ||c — d\\2 — 4||a — ft||2 

=    ||c-42-4||c-5||2 

=    ||c - e||2 + ||e - /||2 + 4||e - /||||/ - g\\ + 4||/ - g\\> 

- 4 (||e - e||2 + ||e - /||2 + 2||e - /|| ||/ - g\\ + \\f - g\\>) 

=   -3||c-e||2-3||e-/||2- 4||e -/||||/- <;r||. (3.8) 

Equation 3.8 implies ||c — d\\2 < 4||a-6||2; and therefore, ||c-d|| < 2||a —6|| (i.e. an 

expansion cannot double the size of a simplex in 3t2). In fact, given a nondegenerate 

simplex (i.e. \\c — f\\ > 0) the fraction of increase is maximized when ||e — /|| = 0 

(i.e. the longest edge is the hypotenuse of a right triangle formed by the endpoints 

of the longest edge and xcentroid)- 

Now consider the case where n > 2. Refer to Figure 3.1 once again. As in 

the case where n = 2 let / be the centroid of all simplex vertices except the worst 

point, and let g be the reflected point. Let c represent another vertex of the simplex 

such that eg would be the longest edge of the simplex if g replaced the worst point. 
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Any change in the size of the simplex as a result of a distortion would be accounted 

for by Q!fc. By the earlier argument, if an expansion occurred (i.e. d replaced the 

worst point instead of g), then the simplex size after the expansion is less than twice 

the simplex size after a reflection. Therefore, an upper bound for the fraction of 

increase in size resulting from an expansion is 2. 

3.4    Formulation of Probabilities 

To prove the convergence of the simplex to a point, we need to know the 

probability masses for each value in the parameter space of the random variable 

Pk. These probabilities are directly related to the probabilities of performing one or 

more of the operations on the simplex. For example, the probability that pk = 2 

is equivalent to the probability that an expansion occurs during the kth iteration. 

Determining these probabilities for the first iteration on a function with constant 

expected value is rather easy because the function's values at the vertices are iid. 

However, without resampling a dependency is introduced because the algorithm 

discards high function values in favor of new ones that are lower. The structure of 

this dependency becomes so complex that we could derive analytically only bounds 

on these probabilities for future realizations of pk. Therefore, to simplify the proof 

we assume that all vertices are resampled at the beginning of each iteration to 

maintain independence between the values at the vertices. Furthermore, we use the 

strict acceptance rule for an expansion which we discussed in Section 1.4.2. 

When the Nelder-Mead algorithm is initialized the starting simplex is de- 

fined by n+1 points in $tn and the function's values at these points. Given a function 

with constant expectation these values are iid random samples. Furthermore, this 
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condition of iid samples is renewed if we resample all vertices at the beginning of 

each iteration. Let Iji^+i] be the ith order statistic of this set of iid random vari- 

ables, {Fi,..., K,+i}- Ignoring the univariate case for this discussion, the relative 

rank of the next draw from the error distribution among the total of n + 2 draws 

determines whether an expansion will be attempted (E), a reflection will occur (R) 

or a contraction will be attempted (C). Since the n + 2 draws are iid, the probability 

that Yn+2 has any rank in the range {1,..., n + 2} is l/(n + 2). Equations 3.9 -3.11 

illustrate the calculation of the probabilities of the events E, R and C respectively. 

P(E)   =   P(Yn+2 < Y[1:n+1]) 

=   P(Yn+2 = Y[1:n+2])   =   (-1^). (3.9) 

P(R)   =   P(Y[1:n+l]<Yn+2<Y[n:n+1]) 

=     J2P(Yn+2=Y[iln+2])     =      (^)- (3-10) 

P(C)   =   P{Yn+2>Y[nM+1]) 

n+2 

£ 
i=n+l 

If an expansion is to be attempted, then the next step in the algorithm is 

to extend the reflection in the same direction. If the value of the function at the new 

point is lower than the reflected point's value, then the new point will be accepted 

(AE)- Under our assumptions, this is equivalent to asking if the relative rank of the 

latest draw is first out of a total of n + 3 draws. If the relative rank of the latest 

draw is not first, then the expansion has failed (A'E, where the prime denotes the 

complement of the event) and we keep the reflected point instead. Now, calculating 

the probability that an expansion of the simplex will occur during the first iteration 

=     E P(Yn+2 = Y[i:n+2])   =   (-^). (3.H) 
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Table 3.1: Notation of Possible Events 

Notation Description of Event 

E an expansion is attempted 

R a reflected point is accepted immediately 

CR a contraction from the reflected point is attempted 

Cw a contraction from the worst point is attempted 

Ai attempted operation i € {E,CR,CW} is accepted 

follows from basic probability laws; that is, we need the probability an expansion 

is attempted times the conditional probability the attempt is successful given an 

expansion was attempted. Mathematically, we write 

P(E n A,) = P(E)P{AE\E) =  (-L-) (-L-) . (3.12) 

And, in the same way we can derive the probabilities for all of the outcomes that 

can occur during an iteration of the algorithm. Each outcome consists of one or two 

of the events listed in Table 3.1. The possible combinations of these events are listed 

in Table 3.2, and by the same reasoning used to develop Equation 3.12 we arrive at 

the probabilities for each of these outcomes. These probabilities are summarized in 

Table 3.3. 

When n = 1 note that the simplex is a line segment and since there are 

only two vertices in our simplex the one with the lowest function value (xi) is the 

same vertex having the second highest function value (xn). This has the effect of 

eliminating the possibility of accepting the reflected point immediately, and under 

the assumption that the error distribution is continuous we have P(Y\ < Yrefiect < 
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Table 3.2: Notation of Possible Outcomes 

Notation Description of Outcome 

E D AE a successful expansion 

E D A'E a failed expansion 

R a reflection 

CR n ACR a successful contraction from the reflected point 

C\v H Acw a successful contraction from the worst point 

CR Pi A'CR a shrinkage involving the reflected point 

C\v H A'cw a shrinkage involving the worst point 

Yn) = P(Yrefiect = Yi) = 0.   Note that the general formula for P(R) in Table 3.3 

yields 0 as well. 

Finally, we can formulate the probabilities for the random variable of in- 

terest, pi, which is a multiplicative parameter yielding an upper bound on the new 

simplex size following the second half of an iteration. Using the sample space of pk 

given in Equation 3.4 and the first iteration probabilities summarized in Table 3.3 

we obtain the results given in Table 3.4. 
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Table 3.3: First Iteration Probabilities of Outcomes 

Probability of Outcome 
Outcome   

n = 1     n = 2 General n 

EnÄE 12 20        fc+^tpi) 

EC]A'E 12 20       W+2J U + 3) 

(J-) (i±i) 

1    (_L_) fill) 
20        \n + 2j \n + 3j 

cRnA'CR        -      -     (—)(—) 

cwnA'cw        -      -     (_)(_) 

cR n ACß 

20 

_2_ z_ 
12       20 

2 
Gw n yicw T^ 
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Table 3.4: Probabilities for pi 

P\ 
Prob{pi} 

n = 1    n = 2 n>2 

2 
1 

12 

1 

20 

1 
n2 + 5n + 6 

1 
3 

12 

15 

20 

ra2 + 5n + 1 

n2 + 5n + 6 

1 8 

12 

4 

20 

4 
2 n2 + 5ra + 6 

Theorem 2        £[/)x]   <   1. 

Proof: 

1. (n = 1): From Table 3.4 we have 

E[Pl]   =   2P(Pl=2) + P(Pl = l) + 0.5P(pi=0.5) 

2. (n > 1): Again, from Table 3.4 we have 

E[pi]   =   2P(Pl = 2) + P(p1 = l) + 0.5P(p1 = 0.5) 

+ n2 + 5n + 1 + 0 5 /_ 
,n2 + 5n + 6y     n2 + 5n + 6 Vn 

= 2( 1 ) 
Vn2 + 5n + 6/ 2 + 5n + 6 

n2 + 5re + 5 
n2 + 5n + 6 

<    1     for all n. 
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3.5    Proof of Convergence 

In this section we prove that the expected value of the simplex size, i.e. the 

length of the longest edge, following the kth iteration is bounded above by another 

expectation of 2k multiplicative factors and the initial simplex size. Secondly, we 

prove that the infinite sum of simplex sizes converges w.p. 1 for n < 2. Recall 

that we defined Dk to be the simplex size following the kth iteration (Equations 3.1 

and 3.2). Also, we defined ak to be the multiplicative factor for the change in 

size occurring during the first-half of iteration k (Equation 3.3), and pk to be an 

upper bound for the change in size occurring during the second-half of iteration 

k (Equation 3.5). Then, the following results were obtained for the Nelder-Mead 

method with resampling of the simplex vertices after each iteration on a stochastic 

function with constant expectation. 

k 

Theorem 3        E[Dk\D0 = d0]   <   d0E II <*iPi 
t=l 

Proof: Combining Equations 3.2, 3.3 and 3.5 yield the following recursive bound 

on the variable simplex size: 

Dk<akpkDk-i. (3.13) 

Repeated applications of Equation 3.13 leads to the following relationship: 

Dk < D0 JJ aiPi- 
t=i 

Therefore, by Equation 3.14 we have 

E[Dk\D0 = d0]   <   E 

=   d0E 

DoY[ociPi\D0 = d0 

k 

Y[aipi\Do = d0 
Lt=i 

(3.14) 



=   doE 
■ k 

n °w 
.t=i 

as d0 is simply a scaling parameter. 

Corollary 1  Given D0 = d0) YlT=i Dk converges w.p. 1 for n < 2. 

Proof: 

oo 

k=\ 

= d0)    < 
oo 

J2doE 
■ k 

by Theorem 3 

= 
oo 

T,d°E 
k=l 

■ k 

n Pi 
.«=1 . 

as <Xi = 1 for n < 2 
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=    £ do (E[pi\)        as the pi are iid given resampling 
fc=i 

<    oo, 

as this series is a geometric series with rate E[pi] < 1 by Theorem 2. Therefore, by 

the First Borel-Cantelli Lemma we have the desired result. A generalization of this 

lemma from Billingsley (1986, p. 305) is stated below for completeness. 

Lemma 1 (Borel-Cantelli) // Xk are nonnegative and J2kLi E{Xk) < oo, then 

Y^h=i Xk converges w.p. 1. I 

We strongly believe the result holds for higher dimensional parameter 

spaces; however, we were unable to derive an analytical proof. Such a proof must 

deal with the problem that the simplex size may increase as a result of a reflection. 

We tried to develop an analytical bound for the product n£=i ai as m Theorem 1, 

but to no avail. Furthermore, each a; depends upon the past even with resampling 

because a,- is a function of the current shape of the simplex as well as the relative 
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ranks of the vertices. In Section 3.6 we present empirical evidence for our conjecture 

that the result still holds for higher dimensional parameter spaces. 

K DfcLi Dk converges w.p. 1, then Dk —> 0 w.p. 1 (meaning the simplex 

shrinks to a point almost surely). Furthermore, the convergence of the series guar- 

antees that the total distance traveled by the simplex is finite w.p. 1. If the distance 

traveled by the simplex on a constant function is not finite w.p. 1, then the simplex 

would never converge on an unbounded linear function with noise having finite vari- 

ance. Observance of "false convergence" could be attributed to not having allowed 

the algorithm to run long enough. Instead, given this result we now hypothesized 

that a simplex could shrink to a point on a linear function if the noise was suffi- 

ciently large to mask the difference in expected function values across the simplex. 

This would result in the determination of a false optimum when clearly there is none 

as the function is unbounded. In the next chapter we demonstrate that there is a 

positive probability for false convergence on a univariate linear function with noise. 

3.6    Empirical Results 

We offer the following empirical evidence to support our conjecture that 

the simplex shrinks to a point on a constant function of more than 2 parameters 

with additive random noise. We simulated the operation of the Nelder-Mead simplex 

algorithm using the strict acceptance rule for an expansion both with and without 

resampling for parameter space dimensions n = 1,..., 5. 50 replications of the first 

200 iterations under each of the 10 conditions specified above were made. Each run 

was initialized with a unit-sized regular simplex with center of mass located at the 

origin. After each iteration, the simplex was translated so that its center of mass 
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was again located at the origin to avoid problems with machine round-off errors as 

the simplex size was decreased. The estimated responses for each iteration were 

the mean size of the simplex D,-, the mean value of a; and the mean value of the 

product («i • • -a,). Plots of these results at 10-iteration intervals are presented in 

Figures 3.2 - 3.6. 

These simulations provide strong evidence for our conjecture when the ini- 

tial simplex shape is regular as all other conditions of the simulation are not a 

factor, including the error distribution which was N(0,1). That is, initial simplex 

size, initial simplex orientation and the distribution of the random noise have no ef- 

fect on the convergence of the Neider-Mead algorithm when the underlying function 

is constant. Furthermore, for an initial simplex that is not regular there exists an 

invertible linear transformation mapping it to a regular simplex (see Hensley et al., 

1988). Therefore, our empirical results of simplex convergence are applicable even 

when starting with a nonregular simplex. Some interesting observations from the 

figures include the following: 

1. In the top graph of Figure 3.2 notice how well the estimated mean simplex 

size with resampling approximates the geometric bound; whereas, it falls below 

the bound everywhere for n > 1 (see the top graph in Figures 3.3 - 3.6). This 

happens because a contraction is identical to a shrinkage when n = 1, and an 

expansion increases the simplex size by a factor less than 2 for n > 1. 

2. Notice in the top graph of Figures 3.2 - 3.6 how the estimated mean size 

from the runs with resampling is an upper bound on the estimated mean size 

from the runs without resampling. Without resampling the probability of 

an expansion is decreasing while the probability of a shrinkage is increasing 
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until a shrinkage actually occurs. A shrinkage involves n new values while 

maintaining the lowest of the n +1 values in the simplex; therefore, a shrinkage 

nearly restores the first-iteration probabilities especially when n is large. This 

means that without resampling E[pi\ < E[pi\] whereas, we have equality with 

resampling. 

3. In the bottom graph of Figures 3.2 - 3.6 we plotted the estimates of E[ai\ 

and E[cci • • • «i] both with and without resampling. Since a,- = 1 when n < 2, 

these plots are straight lines (see the bottom graphs of Figures 3.2 and 3.3). 

For n > 2 notice that E[cti] appears to be approximately equal to 1 while the 

expectation of the product of these variables is decreasing (see the bottom 

graph of Figures 3.4 - 3.6). 
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Figure 3.2: Empirical Evidence of Simplex Convergence (n = 1) 
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Expected Simplex Size (n=2) 
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Figure 3.3: Empirical Evidence of Simplex Convergence (n = 2) 
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Figure 3.4: Empirical Evidence of Simplex Convergence (n = 3) 
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Expected Simplex Size (n=4) 
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Figure 3.5: Empirical Evidence of Simplex Convergence (n = 4) 
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Figure 3.6: Empirical Evidence of Simplex Convergence (n = 5) 



Chapter 4 

Convergence on a One-Dimensional Linear Function with Noise 

In Chapter 3 we proved that the simplex in the Nelder-Mead algorithm 

shrinks to a point w.p. 1 on stochastic functions with constant expectation for 

n < 2, and we provided strong empirical evidence of the same result for n > 2. In 

this chapter we demonstrate both analytically and empirically that there is a positive 

probability that the simplex will shrink to a point on an unbounded function if noise 

is present. Finally, we propose a new modification to the Nelder-Mead simplex 

algorithm to deal effectively with the problem of false convergence. 

4.1    Problem Definition 

To simplify the analysis we assume a univariate linear function with addi- 

tive iV(0,1) noise. With the introduction of slope, the convergence of the simplex 

to a point is no longer independent of the error distribution (as in the constant 

function case). Additionally, the orientation, size and shape of the simplex all have 

an effect upon the convergence. However, in the univariate problem there is only 

one orientation and only one shape for the simplex. We continue to use the strict 

acceptance rule for an expansion, and we consider resampling vertices needed for 

each comparison during an iteration rather than resampling all vertices once for each 

iteration. This is necessary to eliminate the dependency resulting from the slope of 

the linear function; that is, there is now an uphill and a downhill direction which 

affects the probability of an expansion, a reflection, etc. depending upon which 

direction the search is taking. Such a dependency requires the calculation of bivari- 
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ate normal probabilities given a normal error distribution, which is an unnecessary 

complication. 

Without noise the simplex, which is a line segment in the univariate prob- 

lem, will double in size with every iteration as it proceeds downhill. With the 

addition of noise there is a positive probability that the simplex will search uphill 

and that the search will lead to a shrinkage or halving of the line segment. This 

probability increases for an increase in the variance of the noise, a decrease in the 

magnitude of the slope or a decrease in the size of the simplex. Under the normal 

probability model for the error distribution, these three factors can be combined to 

form a single variable—termed the signal-to-noise ratio—for calculating the proba- 

bilities of an expansion, a reflection or a shrinkage, which we demonstrate next in 

Section 4.2. 

4.2    One-Step Probabilities 

Consider Figure 4.1 in which we assume a linear function g with slope 

ß < 0 and intercept ßo. Therefore, g(xj+i) = ß0 + ßxj+i < ßo + ßxj = g(xj) for 

Xj+i > Xj. Let Yij = Yi(xj) be an observation of the function at Xj obscured by 

noise e,j ~ N(0,cr2). Furthermore, let e,j be independent of e^ whenever i ^ k or 

j 7^ /. Then the Yfj's are independent and 

Yij-Nißo + ßx^a2). (4.1) 

From normal probability theory we know that the difference between any two of 

these random variables is also normally distributed. For example, by Equation 4.1 

we know that 

Y(xj+1) - Y(Xj) ~ N(ß(xj+1 - Xj), 2a2), (4.2) 
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Xj-2       Xj_i        Xj Xj+i       Xj+2       Xj+3 

Figure 4.1: Univariate Linear Function with Noise 

where we have dropped the subscript i with the understanding that each observation 

at a point in the parameter space includes a draw from the error distribution. Let 

the current simplex be defined by the two points XJ and Xj+i. By Equation 4.2 the 

probability that the direction of the search will be downhill is as follows: 

P{Y(xj+1)<Y(xi)}   =   P{Y(xj+1)-Y(Xj)<0} 

=   P 
f Y(xj+1) - Y(xj) - ß{xj+1 - XJ)      -ß{xj+1 - XJ) 

-'{ 
=   $ 

V <?V2 

-ß(Xj+1 - Xj) 

< 
ry/2 

z < 
(Ty/2 

ß(xj+i-Xj)y 

<T\/2 j 
(4.3) 
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Table 4.1:   Probabilities of Simplex Operations on a Univariate Linear Function 

observed with N(0, or2) Errors and Resampling for Each Comparison 

Operation          Downhill                 Uphill Total 

Expansion             $(a)3                 (1 - $(a))3 1 - 3*(o) + 3$(a)2 

Reflection $(a)2(l - $(a)) (1 - $(a))2$(a) *(a) - $(a)2 

Shrinkage *(a)(l - *(a)) (1 - *(a))$(a) 2*(o) - 2$(a)2 

where Z ~ iV(0,1) and $ is the cumulative distribution function (cdf) of a standard 

normal random variable. In our example ß < 0 and Xj+\ > Xj, yielding a positive 

operand for the cdf. In fact, when calculating the probability of searching downhill, 

the smallest this operand can be physically is 0, which occurs when ß = 0 for a 

nondegenerate simplex. Therefore, the operand is always nonnegative for the prob- 

ability of searching downhill. Given a simplex consisting of any two points {#;, Xj}, 

let d = \xi — Xj\ be the size of the simplex. Then, Equation 4.3 can be expressed as 

P(search downhill) = $(a), where a = \ßd\/(ay/2). Assuming independence for all 

probability calculations we may derive formulas in terms of $(a) for the probability 

of each simplex operation. Summing the uphill and downhill probabilities for each 

operation yields the total probability for that simplex operation. As discussed in 

Chapter 3, a contraction has the same effect on the simplex as a shrinkage and a 

failed expansion has the same effect as a reflection. Furthermore, no immediate re- 

flections are possible in 5ft1. The probabilities for the simplex operations on a linear 

function in 3J1 are summarized in Table 4.1. 
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4.3    Markov Chain Analysis 

Suppose we chose a value for the slope (ß) and the scale parameter (a). 

Next, let Xk be a state variable on the integers (i) such that the size of the simplex 

at the conclusion of iteration k equals 2*d0, where dQ is the initial simplex size. An 

expansion doubles the size of the simplex, a shrinkage halves the size of the simplex, 

and a reflection leaves the size unchanged. Therefore, there are three possible states 

that can be reached from the current state. Absent any stopping rule our state 

variable defines a doubly infinite random walk under Markov chain theory. The 

one-step transition probability matrix for the general random walk is given below. 

-3        -2 -1 0 1 

where the one-step transition probabilities follow from the total probabilities given 

in Table 4.1. 

Pi   =   P{Xk+l=i + l\Xk = i} 

=   P{Expand|4 = 2{d0} 

$ 
\ß\rd0 > 

(4.4) 
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n   =   P{Xk+1 = i\Xk = i] 

=   P{Reflect|4 = 2''rfo} 

\  <ry/2  )      [   \  <r>/2  ).m 

qi   =   P{Xk+1=i-l\Xk = i} 

=   P{Shrink|4 = 2V0} 

ry/2  ) 

(4.5) 

=   2$ SM-K (4.6) 

4.3.1    A Gambler's Ruin Example 

A gambler's ruin problem is a special type of random walk with an absorb- 

ing state at each end. This type of problem was named after the classical type of 

gaming situation where the player wants to know the probability of ruin (running 

out of money) before reaching a certain total dollar amount (starting money plus 

net winnings) given the amount of money he has at the start of the game. The 

states represent the total amount of money the player has and the one-step transi- 

tion probabilities are the probabilities of losing (qi), winning (p,) or breaking even 

(r,) if possible. From these probabilities one can calculate the probability of ruin 

(XT = 0) given the starting state (X0) using Equations 4.7 and 4.8. 

pi + ... + PN 
P{XT = 0\Xo = i}   =   - 

where pk   = 

+ p\ + ... + pN 

qiq2 ••-qk 

(4.7) 

(4.8) 
P1P2 • • • Pk 

and state N represents the state at which the player would quit if his total amount 

of money reached N dollars.  These equations can be found in most textbooks on 

stochastic processes such as the one by Taylor and Karlin (1984). 
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We use this type of problem configuration to demonstrate that there is 

a positive probability of the simplex shrinking to a point on an unbounded linear 

function with noise. First, we must select our absorbing states for this analysis. 

Given a fixed slope and a fixed scale parameter for the normal error distribution, 

the one-step transition probabilities approach the constant function case (ß = 0) as 

the simplex decreases in size. The one-step transition probabilities for the constant 

function situation are <j,- = 0.5, r,- = 0.25 and p,- = 0.25. If we let ß = —1, a = 1 

and do = s/2, then the one-step transition probabilities equal those of the constant 

function case to six decimal places for states i < —10. Therefore, we selected state 

i = —11 to be the absorbing state representing convergence of the simplex to a point 

(the state of ruin for the gambler). 

Similarly, as the simplex size increases the one-step transition probabilities 

approach the no-noise situation for which <fr = 0,r,- = 0 and pi = 1. Given our 

selection of the parameters ß, <x and do above, the one-step transition probabilities 

equal those of the no-noise case to six decimal places for states i > 3. Therefore, we 

selected state i = 3 to be the absorbing state representing divergence of the simplex 

to infinite size. Using Equations 4.4 - 4.8 all of the probabilities are easily calculated 

and are summarized in Table 4.2. 

Note that if we were to include more states before declaring the absorbing 

state for convergence where each of those states would have one-step transition 

probabilities identical to those of state i = —10, then the probabilities of reaching the 

state of convergence (the last column in the table) would be slightly smaller. Also, 

any changes in the parameters /?, a or do would essentially cause a renumbering of the 

states (the first column in the table) without significant changes to the probabilities. 

In conclusion, this example illustrates the problem that the simplex in the Neider- 
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Table 4.2: Gambler's Ruin Example 

State (i] )  * rt- Pi P{Xk = -ll\X0 = i} 

-11 1.000000 0.000000 0.000000 1.000000 

-10 0.500000 0.250000 0.250000 0.999391 

-9 0.499999 0.249999 0.250002 0.998172 

-8 0.499995 0.249998 0.250007 0.995734 

-7 0.499981 0.249990 0.250029 0.990858 

-6 0.499922 0.249961 0.250117 0.981108 

-5 0.499689 0.249845 0.250466 0.961620 

-4 0.498758 0.249379 0.251863 0.922742 

-3 0.495052 0.247526 0.257422 0.845751 

-2 0.480514 0.240257 0.279229 0.697690 

-1 0.426684 0.213342 0.359974 0.442898 

0 0.266968 0.133484 0.599549 0.140887 

1 0.044465 0.022233 0.933302 0.006407 

2 0.000063 0.000032 0.999905 0.000000 

3 0.000000 0.000000 1.000000 0.000000 
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Mead algorithm can converge to a single point with positive probability even on an 

unbounded function if noise is present. 

4.3.2    Empirical Results of False Convergence 

The operand of the normal cdf in Equation 4.3 may be thought of as a 

signal-to-noise ratio for detecting a search direction for the next iteration. When 

this ratio is large, the probability of searching in the correct direction (downhill for 

minimization) is high. Likewise, as this operand approaches zero, the probability 

of searching in the correct direction approaches 0.50. By resampling the points in- 

volved in each comparison, we obtained the necessary independence to be able to use 

Markov chain theory. Of course, Nelder-Mead does not employ any resampling and 

we suspected that the resulting dependency causes the probability of convergence 

to be larger than what we had obtained with our analytical approach in Table 4.2. 

To test this conjecture we simulated Nelder-Mead on a linear function 

with slope ß = — 1 and additive iV(0,1) noise. The initial simplex size was selected 

to yield a probability of searching downhill equal to 0.525,..., 0.975. Additional 

values of 0.9938, 0.9987, 0.9998, and 0.9999 were included to cover the range of the 

analytical results. The respective percentiles provide the starting signal-to-noise 

ratio. The probability of simplex convergence given the initial signal-to-noise ratio 

was estimated from 10,000 replications of the simulation. Each replication was 

terminated when the simplex size reached either of the two absorbing states from 

the Gambler's Ruin example (i.e. 2-11\/2 for convergence or 23v/2 for divergence). 

Furthermore, to verify our analytical results we repeated the simulation experiment 

with resampling. The empirical results, both with and without resampling, along 

with our analytical results are graphed in Figure 4.2. 
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False Convergence of Nelder-Mead Simplex 
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Figure 4.2: Probability of Convergence of the Nelder-Mead Simplex versus Starting 

Signal-to-Noise Ratio on a One-Dimensional Linear Function with Noise 
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4.3.3    Preventing Gambler's Ruin 

To prevent the simplex from shrinking to a point on an unbounded function 

with noise, the probability of an expansion must be at least as large as the probability 

of a shrinkage (pi > qi) for most states i. This could be accomplished by adjusting 

any one of the three parameters that affect these probabilities. The one parameter 

that we can effectively adjust in a practical situation is the scale parameter (<r) of 

the error distribution. This is done by adjusting the number of observations taken 

at each vertex and each new trial point. By the weak law of large numbers we know 

that sample mean converges in probability to the expected value; that is, 

1 m 

-EtfteJ-^Fte)]. mu 
where m is the sample size. More importantly, as m increases, the magnitude of the 

observed noise decreases. That is, a2/m ->0asm-*oo, So, the larger the sample 

size (m) of observations taken at the point Xj, the smaller the effective noise will 

be when estimating the function's value at Xj. Since a decrease in the simplex size 

lowers the signal-to-noise ratio, a modified Nelder-Mead simplex algorithm must 

increase the sample size of observations taken at each vertex as the simplex size 

decreases to ensure further progress towards the minimum of the expected function. 

However, we must choose a rule for increasing the sample size wisely so as to keep 

the cost of the next iteration as low as possible. 

For example, suppose pi = qi for the one-step transition probabilities in the 

general random walk. Then the simplex size would neither converge nor diverge—it 

would be a null recurrent Markov chain. To solve for this condition we simply equate 

Equations 4.4 and 4.6 and solve for the zeroes of the resulting quadratic equation. 
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The two zeroes are 

/|£|2%\    =   5±^5   =      2763932    7236068 

Note that the first solution is not physically possible as the operand must be non- 

negative. The percentile corresponding to the second solution is 0.59359. Therefore, 

using the same values for each of the parameters used in the gambler's ruin example 

(/? = — 1,<T = l,d0 = y/2) we may solve for the sample size that will give us the 

percentile 0.59359 for each state. For example, for state i = —2 

{ 0.59359 aV2\2 
m   =      —I^I„- 7        =   5.637585, 

V     \ß\*do    J 

which means we would need to take at least 6 observations to guarantee that the 

probability of expanding the simplex is at least as large as the probability of shrink- 

ing the simplex. Such a rule seems easy enough except when one realizes that ß and 

er are unknown for any practical problem; and the form of the expected function is 

unknown as well (e.g. linear, quadratic, concave, convex, etc.). We can estimate 

a with a preliminary experiment and assume that the function is linear across the 

simplex, but ß must be estimated for every iteration of the optimization algorithm 

since the underlying expected function is unknown. As a result, our solution for m 

may be too large if the estimate for ß is poor. Therefore, we will want to increase 

the sample size in a more systematic way as a proportion of the current sample size. 

This motivates our proposed modification to the Nelder-Mead simplex algorithm. 

4.4    Proposed Modification to Nelder-Mead Simplex Algorithm 

Assume a similar model for the noise-corrupted observations Yij as we did 

in Equation 4.1 except now the unknown continuous function (g) is not linear but 
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has a unique minimum. Then the model for new noise-corrupted observations of g 

at each of the two vertices x\ and x2 of simplex is 

Yij-Nbij,*2), (4.9) 

where fij = g(xj). Let rrij be the sample size of observations at vertex Xj which are 

collected at the start of an iteration. Next, estimate g(xj) by the sample mean of 

the observations. Then 

y-> - -Eiw^-Aj- (4.io) 

If we increase rrij we obtain a better estimate of fij = g(xj). And, better estimates 

of fj,j increases the probability of performing the same simplex operation that would 

have taken place if no noise were present. However, if this probability is large 

already, then more observations are probably unnecessary and wasteful. In fact, we 

may want to decrease the number of observations taken at the next iteration if this 

probability is sufficiently large enough at the current iteration. As indicated by the 

empirical results in Section 4.3.2 the probability of false convergence is dependent 

upon the probability of searching in the right direction (downhill for minimization). 

4.4.1    Adjusting Sample Size Based on a Hypothesis Test 

Given our model we can perform the familiar two-sample two-tailed hy- 

pothesis test for determining whether to increase or decrease the number of ob- 

servations at the trial points of the current iteration. The null and alternative 

hypotheses are 

(4.11) 

Hi ■    Vl± V2 
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and the test statistic assuming we know a is 

Tl   =        J*~Y\     • (4-12) 
<Ty/l/m2 + 1/rai 

The distribution of the test statistic Ti under each hypothesis is given in Equa- 

tion 4.13. 

Under H0:   7i ~ N(0,1) 

Under Hx:   Tx ~ N [ —. ^    Ml 1 

(4.13) 

 A 
lcr^/l/m2 + 1/mi 

The mean of the distribution under Hi is the true signal-to-noise ratio for deter- 

mining the search direction of the next simplex reflection. And, |Ti| is an estimator 

for this ratio. 

If a2 is unknown, then it is usually estimated by the pooled estimate of 

the sample variances given by Equations 4.14 and 4.15: 

2 (mi - l)s\ + (m2 - \)s\ 
S

P   =    : Ö ' V4-14) v mi + m2 — 2 

where 
i        '"i 

(4.15) 

The test statistic then becomes 

Y.1-Y.X 

sp^l/m2 + 1/mi 

with distributions 

Under Ho'.   T2 ~ tv 

V2 - Pi 

(4.16) 

(4.17) 

Under Hx:   T2 ~ tu 
^ayjl/m2 + l/ma 
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where tv is Student's t-distribution on v degrees of freedom. For test statistic T2, 

v = (mi + m2 — 2). 

Typically one assumes the null hypothesis to be true unless there is suf- 

ficient evidence to reject it. This is the rationale behind choosing a high level of 

significance (e.g. a = 0.05 or 0.01). In our use of this test one would believe the 

alternative hypothesis to be true most of the time. Therefore, we may not want such 

a high significance level. On the other hand, we may want a high significance level to 

force more observations to be taken in order to increase the probability of searching 

in the correct direction. Recall that we reject the null hypothesis if |7\| > W2, 

where W2 is the 100(1 — a/2) percentile of the standard normal distribution. If 

we fail to reject the null hypothesis, then it is likely that we have not taken enough 

observations at each vertex to be able to detect the correct search direction with 

a sufficiently high enough probability. Therefore, the result of failing to reject the 

null hypothesis leads to an increase in the sample size of observations at each vertex 

and at each new trial point. And, rejection of the null hypothesis means that the 

signal-to-noise ratio is significantly large enough to detect the correct direction for 

the next search. Hence, we may decrease the sample size of observations taken at 

new trial points. This idea forms the basis of a new simplex method for stochastic 

optimization founded on the simplex operations of the Nelder-Mead algorithm. 

The theory behind our proposed algorithm is valid if the observations at 

each vertex are independent and identically distributed. To maintain this condition 

of iid samples we must discard all observations at each vertex following every iter- 

ation of the simplex algorithm. Of course, this could be expensive in a practical 

situation. Now, the condition of iid samples is violated by retaining observations 

from previous iterations because the simplex operations cause vertices with low 
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means to be retained while vertices with high means are discarded. Assume that 

the simplex undergoes a series of reflections and observations at the retained vertex 

are not resampled. Then under the null hypothesis the expected range of the two 

means will decrease with each successive reflection. Other simplex operations are 

more complex to analyze, but they all have the same effect of reducing the expected 

range of the means if resampling is not employed. Therefore, the test would be 

more likely to fail to reject the null hypothesis leading to an increase in the sample 

size at each vertex. So, it appears that it will cost more observations in practice 

whether we resample the vertices at each iteration or not. One possible way to 

avoid higher costs would be to include an adjustable critical value for the test. That 

is, suppose we resampled the low vertex only after a shrinkage. Then for the first 

iteration following a shrinkage we would have iid samples at the two vertices. For 

each iteration following the shrinkage the critical value could be reduced to account 

for the phenomenon we have just described when resampling is not employed. How 

this would be accomplished is not exactly certain, and such a rule may be an un- 

necessary complication if the algorithm is fairly robust with respect to the choice of 

a critical value. 

4.4.2    Sample Size Increase Factor 

Another issue to be determined is the factor for increasing the sample size 

should the hypothesis test fail. Earlier in Section 4.3.3 we suggested increasing the 

sample size by a multiple of the current sample size. That is, if mk = min{mi, m2} 

following iteration k and we fail to reject the null hypothesis, then we suggest letting 

mk+1 = bmk where 6 > 1. For any reasonable choice of b the test could still fail 

to reject the null hypothesis with new samples of size bmk.  Therefore, we might 
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be tempted to repeat the test until we reject the null hypothesis before continuing 

with the simplex operation. Alternatively, the minimum sample size required to 

satisfy rejection at a particular a-level could be determined a priori. However, we 

do not recommend either of these procedures, because the difference in the true 

means might not be that different from zero. This could happen on a fairly level 

portion of the curve, near the optimum, or if the current simplex was straddling 

the optimum. Instead, we recommend performing the hypothesis test once each 

iteration, and should the test fail to reject HQ we recommend increasing the sample 

size geometrically. Additionally, we recommend setting b large enough so that the 

test would not fail to reject Ho forever—a situation that would probably result in 

simplex convergence prior to reaching a local optimum. For a small simplex we can 

assume that the function is linear across the simplex. The worst case scenario that 

could result from having too small a sample size is an inappropriate shrinkage of the 

simplex. To improve our chances of rejecting Ho following a shrinkage we should 

select b > S~2 where 8 is the shrinkage coefficient. If b satisfies this condition, then 

the signal-to-noise ratio is guaranteed to increase on a linear function following a 

failed test no matter what simplex operation followed. 

In Chapter 5 we report the results of a test of our proposed algorithm 

using Monte Carlo simulation on a set of one-dimensional test functions. Also, we 

examine the sensitivity of the algorithm to the choice of the factor 6 and the choice 

of the critical value for the hypothesis test. 



Chapter 5 

Testing of Proposed Algorithm on Univariate Functions 

5.1 Purpose 

We ran the following experiment to investigate the performance of our 

proposed algorithm for minimizing a univariate stochastic function. For our test we 

assume that the random response Y(x) is the sum of an unobservable continuous 

real function g having a unique minimum and an additive iid noise component: 

Y(x) = g(x) + e, (5.1) 

where e ~ iV(0, <72). We compare the performance of our new algorithm to the 

original Nelder-Mead algorithm, the best performing simplex algorithm tested by 

Barton and Ivey (1993) and the Kiefer-Wolfowitz stochastic approximation method 

which is known to converge w.p.l (see Kiefer & Wolfowitz, 1952; Venter, 1967). 

5.2 The Design Frame 

In this section we define the various algorithms we tested, the set of test 

functions for the real continuous function p, the measure of performance and the 

starting values for the algorithms. 

5.2.1    Optimization Codes 

The following algorithms were implemented in FORTRAN and run on 

a Sun SPARCstation for the comparative evaluation.   The original Nelder-Mead 
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simplex algorithm and each of its variants employ the strict acceptance rule for an 

expansion as well as the standard coefficients for simplex operations unless otherwise 

stated. 

NM: The Nelder-Mead simplex algorithm. 

RS9: The Nelder-Mead simplex algorithm except that the shrinkage coefficient is 

set to 0.9 instead of 0.5; and furthermore, the best vertex is resampled upon 

a shrinkage. This was the best performing Nelder-Mead variant among those 

tested by Barton and Ivey (1993). 

NMSN: Our proposed Nelder-Mead algorithm employing a signal-to-noise ratio. 

Additionally, we use the higher shrinkage coefficient and resampling of the 

best vertex upon shrinkage as in algorithm RS9. Let mk be the minimum 

number of observations taken at each new trial point during the kth iteration. 

Then the number of observations taken at each new trial point during the 

(k + l)s* iteration is determined by the following rule: 

[b mk\     if        Y-2 ~ Yl        < W2 

<T^/l/m2 + 1/mi 

K/6J   if     .  -2      -1      >za'2 

a^l/m2 + l/ma 

where the operation [u\ yields the smallest integer greater than or equal to u. 

Additionally, if the rule yields mk+1 > mk, then new observations are taken at 

each vertex a;,- if m,- < mk+1. This is done so that all vertices have at least mfc+1 

observations before performing the (k+l)st iteration. Note that we do not need 

to take the absolute value of the test statistic because the simplex algorithm 

sorts the vertices in ascending order according to the observed function values 

(sample means). Comparisons with the other algorithms are made using b = 

mk+1   =   < 
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1.25 which is slightly greater than 0.9"2 and zal2 = 1.96 corresponding to 

a = 0.05. Additional runs were made to test the sensitivity of these two 

parameters. 

KW: The Kiefer-Wolfowitz stochastic approximation algorithm for minimizing a 

function. A starting value XQ must be provided by the user. Then the recur- 

sive relationship for sampling a new point in the parameter space is given by 

Equation 5.3. 

(Y{xi + a) - Y(Xi - a)\ 
xi+1 = Xi - at ^ J , 

where a,- = i_1 and c,- = z-1'3. 

(5.3) 

5.2.2    Test Functions 

The selection of a set of test functions is a critical step in a comparative 

analysis of minimization algorithms (see Barton, 1987, 1984; Jackson, Boggs, Nash, 

& Powell, 1991). For the real deterministic function g we selected 12 functions repre- 

sentative of the class of continuous real functions with a unique minimum. Some of 

the selected function types have appeared in previous studies. For example, Barton 

(1980) tested an absolute value function and a simple quadratic function. Test func- 

tions G7 and G8 were inspired by a cost minimization example found in Nash (1979). 

Furthermore, the set includes the reflection of each of the nonsymmetric functions 

as the starting values were selected to the right of the origin for convenience. Each 

of the test functions has the unique minimum g(0) = 0. 

Gl: $r(x) = 2|a:|. 

G2: g(x) = [1 - COS(3TTX)]/6 + 2\x\. 
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G3: g(x) = 0.5z2. 

G4: g(x) = exp!x|"3 - exp-3. 

G5: g(x) = 0.1[|ar| + x2 - l/(x2 + 0.2)] + 5. 

G6: g{x) = 20x2/(x2 + 1). 

G7: g(x) = 10[1.3* - 1] - 2.6a;. 

G8: g(x) = lOfl.S-^ - 1] + 2.6z. 

G9: g(x) = [exp1-2* + 2(x - 0.3)2 - 1.18]/25. 

G10: g(x) = [exp-1-2* + 2(x + 0.3)2 - 1.18]/25. 

0.4a:2 x < 0 

10x2/(a;2 + l)   x>0. 
Gil: g(x) = < 

G12: g(x) = 
10x2/(x2 + l)   a;>0 

0.4a;2 x < 0. 

These functions are illustrated using the same axis scales in Figures 5.1 - 5.3. 

5.2.3    Measure of Performance 

Several measures of performance involving distance to the optimum, ob- 

served function values and expected function values were considered. Barton (1987) 

argues using the percentage gap remaining in the expected function value after it- 

eration k, where GAPk = g{xk) — g(x*) and x* is the minimum. We define Xk to be 

the current point after the kth iteration of the Kiefer-Wolfowitz method, or similarly 
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Figure 5.1: Univariate Test Functions #1-4 
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Figure 5.2: Univariate Test Functions #5-8 
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Figure 5.3: Univariate Test Functions #9-12 
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the center of mass of the simplex after the kth iteration of a simplex method. The 

measure of performance is given in Equation 5.4 below. 

PEBOA* • m&M' (54) 

where x0 is the starting point in the Kiefer-Wolfowitz method or the center of 

mass of the starting simplex in the simplex methods. All of the algorithms tested 

are compared solely using the number of objective function evaluations required to 

achieve some level of PERGAP. Such a comparison assumes that all costs except 

the cost of objective function evaluations are insignificant as in the case where each 

evaluation may involve a lengthy computer simulation or a costly field experiment. 

5.2.4    Starting Values 

Hillstrom (1977) recommends using multiple starting values to reduce the 

likelihood of biased results and Barton (1987) further adds that random starting val- 

ues allows for probabilistic assertions about the relative performance of the different 

algorithms. Combining these two ideas we decided upon three ranges of uniformly 

distributed starting values centered around an initial GAP/a ratio. A large initial 

GAP I a- value should make it a relatively easy task for all of the methods to re- 

duce PERGAP significantly; whereas, reducing PERGAP becomes more difficult 

as the initial GAP/cr value is decreased. What exactly a "small" value versus a 

"large" value would be is open to debate. However, we chose three different orders 

of magnitude for our initial ranges each of which occur to the right of the origin: 

(1) 1.0 ± 0.1; (2) 10.0 ± 0.1; and (3) 100.0 ± 0.1. By perturbing the starting values 

we reduce the likelihood of problems associated with starting at a particular value 

that might bias a single method because of the geometry of its step sizes. 
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Upon specification of an initial GAP ja value, the corresponding value of x 

is determined using a simple search procedure employing the bisection method. The 

scale of the Gaussian errors was chosen to be 1 except in the following scenarios: 

(1) a = 0.19 for the 6th function when GAP/a = 100 as supxf6(x) = 20.0; and 

(2) for the ll"1 function a = 1.0,0.2,0.09 for the three starting ranges of GAP/a 

respectively as swpx>0 fu(x) = 10. 

5.2.5    Experimental Design 

A full factorial design of all combinations of the algorithms, test functions 

and ranges of starting values was performed. Therefore, our experiment consisted 

of 4 algorithms x 12 functions x 3 ranges of starting values for a total of 144 

design points. Each of these design points were replicated 40 times using common 

random numbers from 40 separate streams (1 stream for each replication). The 

variables containing the cumulative number of objective function evaluations and 

the level of PERGAP were recorded after each iteration and averaged across the 

40 replications. A single replication was halted when one of the following stopping 

criteria was satisfied: (1) the number of iterations reached 10,000; (2) the number 

of function evaluations exceeded 50,000; or (3) the simplex size fell below 10~10. 

5.3    Results 

The experiment generated a large volume of data and we quickly discovered 

that the most effective means of examining the data was through the use of graphs. 

For every combination of test function and starting value we plotted the average level 

of PERGAP versus the average number of objective function evaluations for the four 
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algorithms tested. These averages are by iteration number; and therefore, slightly 

different results would have been obtained if we had selected another means for 

averaging across the 40 replications (e.g. averaging PERGAP for every 10 function 

evaluations). We plotted these averages at each iteration until the average number 

of function evaluations reached 20,000. This is the point at which algorithm KW 

was terminated having reached the stopping criterion of 10,000 iterations at a cost 

of two function evaluations per iteration. Algorithm NMSN reached 20,000 function 

evaluations in fewer iterations than KW and was terminated upon exceeding 50,000 

function evaluations. Methods NM and RS9 required fewer function evaluations per 

iteration than NMSN, and always terminated as a result of the simplex size falling 

below 10-10 before reaching 10,000 iterations; and therefore, their lines end well 

short of the range of the graphs. 

Additionally, we plotted each function/starting value combination twice. 

A linear scale for the variable PERGAP is more useful for practical considerations; 

whereas, a logarithmic scale is more useful for theoretical considerations. Because 

of the large number of graphs, we have included only a sample pair of graphs here, 

Figure 5.4, along with our discussion of the results. However, the complete set 

of graphs are offered in Appendix A for further reference and average values at 

termination are tabulated for several variables in Appendix B. 

5.3.1    Discussion of Algorithmic Performance 

On most of our test functions the Kiefer-Wolfowitz algorithm performed 

well when started near the minimum (i.e. GAP I a — 1.0 ± 0.1). As the range of the 

starting point was moved farther from the minimum, the slow convergence rate of 

this algorithm is clearly exhibited. In addition to the decreasing gain parameter, the 
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algorithm's step size is influenced by the magnitude of the gradient of the expected 

function at the current point. This influence is especially great at the start of the 

optimization while the gain parameter is fairly large. If the magnitude of the gradi- 

ent is large, then the algorithm's next step size will be large. And, if the magnitude 

of the gradient at the current point is small, then the algorithm's next step size will 

be small. Hence, if the current point is a long distance from the minimum, and the 

magnitude of the gradient is small over that distance, then the rate of convergence 

will be very slow. On the other hand, if the minimum of the function lies inside a 

steep valley, then it is highly likely that the Kiefer-Wolfowitz method will overshoot 

the minimum by a large amount when it is started near or inside the valley. This 

phenomenon of overshooting the minimum is exhibited on Function 6 which caused 

a slow rate of convergence. This problem of overshooting the minimum early in the 

optimization was so severe on Function 4 that the PERGAP computation resulted 

in a numerical overflow condition on the computer. 

We are well aware of the fact that our implementation of the Kiefer- 

Wolfowitz algorithm is a straight forward interpretation of their original paper 

(1952), and for that reason it may be considered a naive implementation. Others 

have examined ways of improving stochastic approximation methods, e.g. Kesten 

(1958); however, we were not able to locate any implementations of stochastic ap- 

proximation algorithms in the public domain (Andradottir, 1994; Ruppert, 1994). 

Besides, our intention of including the Kiefer-Wolfowitz algorithm was to have a 

method that is known to converge to the true optimum with which to compare our 

NMSN simplex algorithm. 

The false convergence of algorithm NM is clearly exhibited in most of the 

graphs even when the algorithm is started far from the minimum as when GAP ja = 
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100 ±0.1. Obviously, when algorithm NM does terminate, additional improvement 

may not be of practical importance. But, clearly the Neider-Mead simplex algorithm 

is not the best algorithm to choose for optimization under noisy conditions. Many 

modifications have been offered to improve the performance of this simplex algorithm 

on stochastic functions and several were tested by Barton and Ivey (1993). The best 

performing modifications from their study were incorporated in algorithm RS9, but 

it also exhibits the behavior of false convergence even though its onset is delayed. 

Particularly on a logarithmic scale, the convergence of these two algorithms before 

reaching the minimum can be clearly seen. 

Our proposed algorithm, NMSN, does not appear to exhibit this problem 

of false convergence. This is clearly seen in the graphs using a logarithmic scale for 

PERGAP. In fact, in all but two of the graphs algorithm NMSN is doing as well 

or even better at minimizing the function over the first 20,000 function evaluations. 

The two minor exceptions occur on Function 11 at GAP fa = 10 and Function 6 at 

GAP/a = 100. Furthermore, algorithm NMSN never exhibited the kind of severely 

slow convergence rate as exhibited by algorithm KW on some functions, particularly 

when started far from the minimum. 

5.3.2    Sensitivity of NMSN Parameters 

Additional simulations were performed with algorithm NMSN to test the 

sensitivity of the critical value and the multiplication factor for increasing the sample 

size of observations. First, while maintaining a constant multiplier of b = 1.25 we 

set the critical value to correspond to the following values of a: 0.5, 0.4, 0.3, 0.2, 

and 0.1 in addition to the runs made for a = 0.05. These values were tested 

on all 12 functions and at starting ranges GAP/a = 1.0 ± 0.1 and 10.0 ± 0.1. 
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Graphs of PERGAP versus number of function evaluations did not indicate a large 

sensitivity to changes in the critical value; however, tabular summaries indicate that 

larger critical values are more efficient for obtaining lower levels of PERGAP. In 

Tables 5.1 and 5.2 we report the average number of function evaluations required 

to reach the point where PERGAP remains below the specified level. 

Next, we held the critical value corresponding to a = 0.10 constant and 

set the multiplication factor b to the following values: 1.10, 1.25, 1.50, and 2.00. 

Once again, the graphs of the results were not very conclusive. In general they 

indicate that higher values are more expensive early in the optimization, but b = 1.10 

was generally more expensive near the end of the optimization. This supports 

our rationale for choosing b to be only slightly larger than 8~2. If b is not at 

least as large as the square of the inverse of the shrinkage coefficient, then false 

convergence is certain to occur. However, larger values of b seem to be of no benefit 

at best. Table 5.3 reports the number of function evaluations required to reach 

the point where PERGAP remains below 1% on the 12 test functions started at 

GAP/a = 10.0 ± 0.1. 

5.4    Conclusion 

Our test results demonstrate the superiority of algorithm NMSN over the 

original Neider-Mead algorithm and the previously known best performing derivative 

RS9. Although algorithm RS9 performed much better than the original Nelder-Mead 

algorithm, it too exhibited the problem of false convergence although its onset was 

delayed. It appears that progress towards the true minimum cannot be sustained 

without increasing the sample size of observations taken at each vertex. All of the 
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Table 5.1:   Effect of Critical Value on Average Number of Function Evaluations 

Needed by NMSN to Reduce PERGAP to 10% when starting at GAP/a = 1.0 ±0.1 

Test 
Level of Significance (a) 

function 0.50 0.40 0.30 0.20 0.10 0.05 

1 3373 3122 2076 1578 545 618 

2 3566 2005 1037 611 440 420 

3 2101 287 89 72 49 14 

4 3118 153 76 72 47 69 

5 705 1017 901 562 1862 1372 

6 681 4 4 4 4 4 

7 615 307 66 97 132 40 

8 602 144 51 251 40 29 

9 724 268 35 52 32 54 

10 321 377 332 257 78 121 

11 1166 796 121 63 105 86 

12 565 327 57 118 121 77 

Average 1461 733 403 311 287 242 
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Table 5.2:   Effect of Critical Value on Average Number of Function Evaluations 

Needed by NMSN to Reduce PERGAP to 2% when starting at GAP/a = 10.0±0.1 

Test Level of Significance (a) 

function 0.50 0.40 0.30 0.20 0.10 0.05 

1 2382 664 800 420 303 188 

2 558 642 554 499 607 507 

3 9 9 9 9 10 11 

4 9 10 10 10 11 12 

5 287 558 514 652 1287 1093 

6 427 23 25 29 31 34 

7 9 9 9 10 9 11 

8 14 20 15 17 18 18 

9 9 10 11 11 12 12 

10 35 30 39 36 41 46 

11 28 22 31 26 27 30 

12 57 79 79 76 131 123 

Average 318 173 174 149 207 173 
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Table 5.3: Effect of Multiplication Factor on Average Number of Function Evalu- 

ations Needed by NMSN to Reduce PERGAP to 1% when starting at GAP/a = 

10.0 ±0.1 

Test Multiplication Factor (b) 
function 1.10 1.25 1.50 2.00 

1 2471 815 1803 3786 

2 1156 837 1781 1082 

3 10 18 18 19 

4 45 11 50 22 

5 771 1158 2409 7125 

6 33 42 53 70 

7 10 73 10 10 

8 38 37 40 28 

9 12 11 21 12 

10 101 87 84 126 

11 50 82 78 203 

12 133 159 281 708 

Average 402 277 552 1099 
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variants tested by Barton and Ivey (1993) involved modifications similar to those in 

RS9 to delay the onset of false convergence, but none of them attack the problem 

by averaging repeated observations at each vertex. 

Given our set of test conditions, the algorithm NMSN performed the best 

overall in terms of reducing the expected function value. The algorithm reduces 

to the original Nelder-Mead simplex method when noise is not present or when 

it is negligible. And, under noisy conditions the algorithm sensibly increases the 

sample size of observations taken at each new vertex in order to obtain more precise 

estimates to guarantee further progress towards the minimum. When the Kiefer- 

Wolfowitz algorithm performed well, algorithm NMSN performed just as well. And, 

method NMSN appears to be more robust than the Kiefer-Wolfowitz stochastic 

approximation method, which demonstrated a very slow rate of convergence on 

some functions. 

Although one could probably create a situation in which method NMSN 

performed much worse than any of the other methods we tested, we believe that 

our set of test functions represents the types of topologies one would expect to 

encounter in the class of continuous functions with a unique minimum. And on 

these test functions, algorithm NMSN shows the best overall performance among 

the four algorithms tested. 



Chapter 6 

Extension of Proposed Algorithm to N Dimensions 

Given the success of our proposed algorithm for univariate stochastic min- 

imization we next considered extending the procedure for determining when to in- 

crease the sample size per vertex to n-dimensional problems. In this chapter we 

present some candidate procedures for such an extension of our proposed algorithm. 

When n = 1 the procedures in Sections 6.1 and 6.2 reduce to the univariate proce- 

dure discussed in Section 4.4. 

The model for observations of the function g at Xj remains the same; that 

is, assume Yij independent with 

Yij-Nfao*), (6.1) 

where fij = #(XJ) for some continuous real g : &n —► 9£ with a unique minimum. 

Given rrij iid observations of g at Xj, we are able to determine critical values for the 

hypothesis test under the procedures described in Sections 6.1 and 6.2. Each of the 

procedures test the following set of hypotheses: 

Ho :   Mi = J*2 = •' • = fin+i 
(6.2) 

Hi :   not all fij are equal 

As in our univariate procedure, we increase the minimum sample size needed per ver- 

tex if we fail to reject the null hypothesis; otherwise, we may decrease the minimum 

sample size required. 
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6.1    Range of Vertex Means 

Noting that our univariate procedure of Section 4.4 uses the difference 

between the two vertex means, one natural extension of this procedure to higher 

dimensions would be to use the range of the vertex means; that is, the difference 

between the highest and lowest vertex means. One restriction we need to make for 

theoretical reasons is the requirement that the sample size at all the vertices are 

equal (i.e. rrij — m). Then assuming an iid sample of size m from our model in 

Equation 6.1 we have 

Y.j -N~N (o, ^ . (6.3) 

Assuming the Y{j are independent, the (Y.j — fij) are independent and identically 

distributed. Therefore, a test could be based on the standardized range distribution. 

The statistic T3 is distributed as the standardized range under the null hypothesis, 

where 

T3   =   F-[»+i] ~ F-W (6.4) 
(T/y/m 

and where F.[n+i] = max(Y.j) and Y,[i\ = min(Fj). Harter (1960) tabulated critical 

values for the standardized range distribution. In the event a2 is unknown, one may 

use the studentized range distribution which uses the mean squared error (MSE) 

to estimate a2. The sum of squares for error is denned in Equation 6.5. 

SSE = EE^-r.,) 
j=i t=i 

n+l mi n+l 

= ££^-£™^- (6-5) 
j=i i=i      j=i 

Then MSE = SSE/(M - (n + 1)), where M — T,]=l "ij? is an unbiased estimator 

for a2.  It follows from the definition of the studentized range distribution q (see 
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pages 180-182 Arnold, 1981) that 

max(Fj — Hi) — rmn(Y.j — (ij) 
?n+l,M-(n+l) > (6-6) 

yjMSE/m 

where n + 1 is the number of treatments (vertices for our usage) and M — (n + 1) 

is the number of degrees of freedom associated with SSE. Hence the statistic T4 of 

Equation 6.7 has a studentized range distribution under the null hypothesis. 

T4   =   F-["+1]~F-[1). (6.7) 
y/MSE/m 

The appropriate test rejects the null hypothesis whenever T4 > qn+i,M-(n+i)i where 

the critical value is the 100(1 — a) percentile of the studentized range distribution 

for n + 1 treatments and M — (n + 1) degrees of freedom for SSE. Tables of these 

critical values can be found in Harter (1960) as well as most textbooks on applied 

linear models (e.g. Neter, Wasserman, & Kutner, 1985). 

6.2    Variance of Vertex Means 

Suppose we define the signal to be the variance of the fij, which are the 

expected function values at the current simplex vertices. We can estimate this 

variance using the numerator mean squares from the one-way analysis of variance 

(ANOVA) model. The numerator sum of squares is given in Equation 6.8. 

s2 = Em,-(yj-y| 
i=i 

n+l 

=   Y,™iY.j~MY..- (6-8) 
i=i 

where M = YLlZi mj- Next, we define the test statistic T5. 

T5   =   -^-. (6.9) 
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Under the null hypothesis T5 ~ Xn> a chi-squared distribution on n degrees of 

freedom. And, we reject the null hypothesis if T5 > xV*- Note the expected value 

of the mean squares (see p. 447 Arnold, 1990) given in Equation 6.10. 

1 1 n+1 

-ES2   =   ^-Em^-T*)2, (6.10) 
n n j=1 

where ~ß = (l/M)J^j=i ^jf^j-  Therefore, our statistic is an estimate of the ratio 

of (signal plus noise) to noise.   And, if the fij are all equal, then ES2/n = a2. 

Furthermore, when n = 1 this test is the same test we derived in Section 4.4. 

Since Equation 6.8 is the formula for the numerator sum of squares in a 

one-way ANOVA test, the natural extension to the situation where a1 is unknown 

is the familiar F-test used in ANOVA. The denominator sum of squares for the 

test statistic is given by Equation 6.5, and the appropriate test statistic is given in 

Equation 6.11. 
_ SVn 

Te   ~    SSE/(M-(n + l)Y {bAl) 

Therefore, under the null hypothesis T6 ~ -F„,M-(n+i)> an F-distribution on n and 

M — (n + 1) degrees of freedom; and, we reject the null hypothesis if T6 > F^M-^+I)- 

6.3    Other Possible Candidate Procedures 

Other procedures for testing the hypothesis that all vertex means are equal 

may be developed. In this section we discuss the use of order statistics for the testing 

procedure. First, we present how the critical value of the largest order statistic 

from an iid sample of iV(0,1) random variables can be found. Let Zi,..., Zn be 

independently distributed iV(0,1) random variables and let Z[n] = max{Z1;... ,Zn}. 

Then probability statements involving Z[n] are easily made as in Equation 6.12. 

P(Z[n]>z)   =   !-*(*)", (6.12) 
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Table 6.1: Upper a = 0.05 Percentage Points of the Distribution of Z[n] 

n $(z)         z n $(z)         z 

1 0.9500 1.645 6 0.9915 2.386 

2 0.9747 1.955 7 0.9927 2.442 

3 0.9830 2.121 8 0.9936 2.490 

4 0.9873 2.234 9 0.9943 2.531 

5 0.9898 2.319 10 0.9949 2.568 

where $ is the cumulative distribution function for the standard normal distribution. 

By setting the right side of Equation 6.12 equal to a, a critical value for a size a 

test based on Z[n] can be found by first solving for $(z) (see Equation 6.13). 

$(z) = VT^. (6.13) 

Then the appropriate critical value can be located using a table or computer program 

that yields percentiles of the standard normal distribution. For example, Table 6.1 

lists the upper a — 0.05 percentage points for the distribution of Z[n] and n = 

1,...,10. 

One criticism of using the range of the vertex means (Section 6.1) is that 

the search direction for n > 1 is not from the worst vertex through the best vertex 

but rather from the worst vertex through the centroid of the remaining vertices. 

This suggests a procedure similar to the one in Section 6.1, but instead we use the 

mean at the worst vertex (the largest mean) minus the average of the remaining 

vertex means (which is an estimate of the mean at the centroid). Let Y     be the 
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weighted average of the vertex sample means excluding vertex i as in Equation 6.14. 

Y(i) = pjE^-. (6-14) 

where M® = J2&i mj- And let fi® be the weighted average of the true vertex means. 

To obtain identically distributed random variables we must have equal sample sizes 

at the vertices (i.e. let rrij = m Vj); and therefore, M(,) = nm. Now, let Wj be 

defined by Equation 6.15. 

Although the Wj are identically distributed N(0,1) random variables, they are not 

independent. To achieve independence we would have to resample all vertices for 

each Wj. Therefore, this procedure would be impractical to implement. 

With a slight modification, however, we can develop another procedure 

that does not require resampling the vertices (n + 1) times to achieve independence 

for the (n + 1) random variables. Instead, suppose we partition the total number of 

observations at a vertex into two groups, m and m'. Let Y.j be the sample mean of 

the first m observations at vertex j. Next, let Y be the grand mean of the remaining 

m'(n+l) observations (m' per vertex) where we could let m' w m/(n+l). Therefore, 

F.i,..., F (n+i), Y are independent estimators for ^x,..., fin+i,ß respectively. Now, 

define Uj as follows: 

Uj   = 
mm'(n + 1)    ((Y.j - fij) - (Y - ß)\ ^^ 

\ m + m'(n + 1) \ & ) 

Then Ui,..., t/n+i are independent N(0,1) random variables. Next, define the test 

statistic T7 as follows: 

T7   =   max 
mm'(n + 1)    (Y.j-Y u ,ß^ 

i     I \ m + m\n + 1) 
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Then under the null hypothesis Ty has the same distribution as Z[n+i], and the 

critical values in Table 6.1 may be used for an a = 0.05 test of equal vertex means. 

6.4    Summary 

We have described several procedures for determining whether to increase 

or decrease the minimum sample size of observations taken at each vertex. In 

Chapter 7 we implement the standardized range procedure and the variance of the 

means procedure in a multivariate experiment. We chose not to estimate <r2, because 

implementation of the studentized range or ANOVA procedures would require a 

large table of critical values or the coding of an algorithm to derive them as needed. 

Also, our implementations do not include resampling the retained vertices at every 

iteration except following a shrinkage. Therefore, as was the case for our univariate 

procedure, our implementations are heuristic rules for changing the vertex sample 

size. Since the hypothesis test will not have the correct size, except following a 

shrinkage, we surmise this will cause the test to fail more often; and therefore, 

the sample size may be increased unnecessarily. However, additional observations 

averaged with those from previous iterations will reduce the dependency between the 

vertex means at the next iteration. For this reason and because of the impracticality 

of discarding observations from previous iterations, our implementations do not 

include resampling after every iteration. 



Chapter 7 

Testing of Proposed Algorithm on Multivariate Functions 

7.1 Purpose 

We ran a similar experiment to the one described in Chapter 5 to investi- 

gate the performance of our proposed algorithm for minimizing a stochastic function 

of more than one variable. Our model of the minimization problem is similar to the 

one described in Chapter 5 except that the domain of the function g is now !*Rn. 

7.2 The Design Frame 

In this section we define the various algorithms we tested, the set of test 

functions for the real continuous function g, the measure of performance and the 

starting values for the algorithms. 

7.2.1    Optimization Codes 

Algorithms NM, RS9 and KW were included in our multivariate experi- 

ment for comparison with our proposed algorithm. In addition to these three algo- 

rithms the following two algorithms were implemented in FORTRAN and run on a 

Sun SPARCstation. 

NMSNR: Our proposed algorithm using the range of the vertex means to estimate 

the signal assuming a is known. Once again we use a shrinkage coefficient of 

0.9 and a contraction coefficient of 0.9. Let mk = min(mi,..., mn+i) following 
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the kth iteration of the algorithm. The rule for determining the sample size at 

the next iteration is 

mk+1   =    < 

[6m*j  if yWl-|-w < r«+l 
a/Vmk ^^ 

Kr.+ii - Y. [mk/b\   if£Jü+H 
i r~k     ■" ' "+1 

where r"+1 is the 100(1 — a) percentile of the standardized range distribution 

with n + 1 levels (simplex vertices). Theory requires all vertex sample sizes 

to be equal; however, we allow different sample sizes in our implementation 

since we do not have independent means anyway except following a shrinkage 

at which time the sample means are all equal, too. 

NMSNV: Our proposed algorithm using the numerator mean squares due to dif- 

ferences in the expected function values at the vertices to estimate the signal 

assuming a1 is known. The shrinkage and contraction coefficients are set to 

0.9 as in NMSNR and the rule for changing the minimum sample size of ob- 

servations to take at new vertices is given in Equation 7.2. 

mk+1   = i 
[bmk\     if^<X^c 

CT'       '"" (7.2) 

LmV&J   if^F>X^° ,*/.. *sv»^« 
a 

where xV* 1S the 100(1 — a) percentile of the chi-squared distribution with 

n degrees of freedom and 52 is the numerator sum of squares defined by 

Equation 6.8. 

For the primary experiment, the methods NMSNR and NMSNV were normalized in 

the selection of critical values for their respective testing procedures using a = 0.05. 

Later simulation runs were made to test the sensitivity of these two methods to 

changes in the critical values (i.e. changes in a). 
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7.2.2 Test Functions 

The set of test functions used in this experiment are the same ones selected 

by Barton and Ivey (1993). They are a set of 18 deterministic functions collected by 

More, Garbow, and Hillstrom (1981) for the express purpose of testing the reliability 

and robustness of unconstrained optimization software. Each of the test functions 

in the collection have the form / : 9£n —► 9ftm where n, m or both may be variable. 

An unconstrained minimization problem is formed using a sum of squares as in 

Equation 7.3. 
m 

*(x) = E/?(*).    x€*". (7.3) 
1=1 

For large values of rn or badly scaled functions /,-, the value of g will greatly exceed 

its minimum value even within a relatively small neighborhood of the optimum. 

Therefore, we divide g of Equation 7.3 by 10,000 (except for Function 13) to rescale 

it before adding the N(0,1) noise. The parameters n and m along with the names 

by which the functions are known are listed in Table 7.1. 

7.2.3 Measure of Performance 

Our measure of performance is the same one used in the univariate testing 

described in Chapter 5. That is, it is the percentage gap remaining in the expected 

function values, where the initial gap is the difference in the expected function values 

at the starting point and at the minimum. Our performance variable PERGAP is 

defined by Equation 5.4. 
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Table 7.1: Parameters of Multivariate Test Functions 

# function JName n m 

1 Helical Valley 3 3 

2 Biggs EXP6 6 13 

3 Gaussian 3 15 

4 Powell badly scaled 2 2 

5 Box 3-Dimensional 3 10 

6 Variably Dimensioned 4 6 

7 Watson 9 31 

8 Penalty Function I 8 9 

9 Penalty Function II 8 16 

#    Function Name n    m 

10 Brown badly scaled 2 3 

11 Brown k Dennis 4 20 

12 Gulf R&D 3 99 

13 Trigonometric 8 8 

14 Extended Rosenbrock 4 4 

15 Extended Powell 8 8 

16 Beale 2 3 

17 Wood 4 6 

18 Chebyquad 9 9 

7.2.4    Starting Values 

More et al. (1981) provide starting values for each of the functions in their 

collection. These starting values were used by Barton and Ivey (1993) in their 

empirical tests. However, upon rescaling, some of these starting values are too 

close to the minimum. Rather, we selected starting values to control the initial 

gap to obtain a starting GAP/a ratio as was done in the univariate testing. Since 

the results in the univariate experiment for GAP I a = 100 proved to be not very 

interesting in differentiating the simplex-based algorithms we chose starting values 

near GAP ja = 1 and 10 only. Once having located a particular starting value, each 

coordinate was perturbed by adding a uniformly distributed variate on the interval 

(—0.1,0.1). The starting values are listed in Table 7.2. 
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Table 7.2: Starting Values of Multivariate Test Functions 

Test Starting Values 

function GAP la « 1 GAP ja « 10 

1 (3, 5, -7.2) (5, 25, -17.74) 

2 (10, -2, 8, -1, -2.7, -1.5) (10, -2, 20, -4.9, -1.5, 4.9) 

3 (2, -0.1, -5) (6.28, -0.1, -5) 

4 (0.01, 1) (0.01, 3.2) 

5 (-4.25, 3, -10) (-5.5, 4, -20) 

6 *i = (i/»»-o.i)(-i)i+1 Xj = (4-j/n)(-iy+* 

7 Xj = —0.65 Xj = -1.32 

8 XJ = 0.7j XJ = 1.25.7 

9 XJ = 1.7 Xj = 3 

10 (1.0E+06, 1.05E-04) (9.999E+05, 5.0E-06) 

11 (-8.6, 12.2, -0.7, 0.3) (-8, 11, -5, 0) 

12 (-0.95, 1, 0.333) (-0.95, 1, 0.4) 

13 XJ = 0.45J/8 XJ = O.llj/8 

14 XJ = 2.2(-iy+1 XJ = 4.4(-l)J+1 

15 (3, -3, 1.5, 7.1, 3, -3, 1.5, 7.1) (3, -9, 1.5, 10, 3, -9, 1.5, 10) 

16 (2.6, 4.3) (2.5, 6) 

17 (-2.8, -2, 3, 7) (-5, -2, -5, 7) 

18 XJ = 0.1j + 0.274 XJ = 0.1 j + 0.34 
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7.2.5    Experimental Design 

A full factorial design of the 5 algorithms x 18 test functions x 2 starting 

values yielding 180 design points was performed. Each design point was replicated 

40 times using common random number from 40 separate streams. The variables 

containing the cumulative number of objective function evaluations and the level of 

PERGAP were recorded after each iteration and averaged across the 40 replications. 

A single replication was halted when one of the following stopping criteria was 

satisfied: (1) the total number of function evaluations exceeded 10,000(n +1), where 

n is the dimension of the domain of the test function; (2) the total number of 

iterations reached 10,000; or (3) the simplex size fell below 10~10. 

7.3    Results 

Our multivariate experiment generated volumes of data as we discussed for 

the univariate testing in Section 5.3. The same types of graphs were made for the 

multivariate test functions and the complete set are offered in Appendix C. Addi- 

tionally, the average value of several variables at termination are provided in tabular 

form in Appendix D. In Tables 7.3 - 7.8 we report the average value of PERGAP, 

when the average cost has reached 100, 1000, and 10,000 function evaluations for 

the 18 test functions and the 2 starting values. The lowest value of PERGAP in 

each row of these tables is boxed providing a snapshot of the performance of the 

methods at these three cost figures; whereas, comparisons between the methods over 

the entire simulation are best made by examining the graphs in Appendix C. 
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Table 7.3: PERGAP at 100 Evaluations when starting at GAP ja « 1 

Test 
function 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

NM 

0.996E+02 

0.697E+02 

0.147E+01 

0.378E+02 

0.579E+02 

0.184E+02 

0.646E+02 

0.992E+02 

0.927E+02 

0.106E+03 

0.308E+00 

0.307E+02 

0.814E+02 

0.992E+02 

0.524E+01 

0.189E+01 

0.128E+00 

Method 

RS9 NMSNR NMSNV 

0.918E+02 

0.376E+02 

0.712E+00 

0.791E+01 

0.208E+02 

0.203E+01 

0.496E+02 

0.992E+02 

0.795E+02 

0.941E+02 

0.484E+02 

0.140E+01 

0.203E+02 

0.221E+02 

0.252E+01 

0.697E+02 

0.984E+02 

0.880E+02 

0.527E+02      0.527E+02      0.527E+02      0.527E+02 

0.811E+02 

0.117E+00 

0.920E+02 

0.144E+00 

0.442E+01 

0.543E+02 

0.917E+02 

0.724E+00 

0.241E+01 

0.145E+01 

0.107E+00 

0.576E+02 

0.936E+02 

0.646E+00 

0.179E+01 

0.129E+00 

0.967E+02 

0.472E+02 

0.989E+00 

0.191E+02 

0.223E+02 

0.235E+01 

0.705E+02 

0.978E+02 

0.869E+02 

0.919E+02 

0.175E+00 

0.297E+01 

0.565E+02 

0.941E+02 

0.539E+00 

0.182E+01 

0.115E+00 

KW 

0.928E+02 

0.633E+01 

0.127E+00 

0.659E+01 

0.893E+01 

0.837E+02 

0.328E+02 

0.129E+06 

0.246E+02 

0.644E+02 

0.591E+00 

0.161E+01 
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Table 7.4: PERGAP at 1,000 Evaluations when starting at GAP/a » 1 

Test 
function 

Method 

NM RS9 NMSNR NMSNV 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0.996E+02 

0.699E+02 

0.147E+01 

0.378E+02 

0.578E+02 

0.184E+02 

0.652E+02 

0.992E+02 

0.926E+02 

0.782E-03 

0.106E+03 

0.308E+00 

0.325E+02 

0.814E+02 

0.992E+02 

0.524E+01 

0.189E+01 

0.503E+00 

0.928E+02 

0.334E+02 

0.107E+01 

0.111E+02 

0.194E+02 

0.229E+01 

0.384E+02 

0.987E+02 

0.732E+02 

0.804E+02 

0.411E-03 

0.808E+02 

0.984E-01 

0.147E+02 

0.124E+01 

0.490E+01 

0.960E+01 

0.264E+00 

0.298E+02 

0.883E+02 

0.512E+02 

0.607E-02 

0.733E+02 

0.110E+00 

0.123E+02 

0.544E+02 

0.894E+02 

0.773E+00 

0.147E+01 

0.390E+00 

0.219E+01 

0.198E+02 

0.730E+02 

0.203E+00 

0.125E+01 

0.880E+02 

0.150E+02 

0.132E+01 

0.460E+01 

0.159E+00 

0.292E+02 

0.876E+02 

0.492E+02 

0.457E-02 

0.673E+02 

0.131E+00 

0.255E+01 

0.193E+02 

0.736E+02 

0.140E+00 

0.107E+01 

KW 

0.850E+02 

0.478E+01 

0.127E+00 

0.914E+01      0.603E+01 

0.492E+01 

0.624E+02 

0.196E+02 

0.115E+06 

0.157E+02 

0.380E+02 

0.439E+00 

0.119E+01 

0.121E+00      0.124E+00 
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Table 7.5: PERGAP at 10,000 Evaluations when starting at GAP/a « 1 

Test 
function 

Method 

NM RS9 NMSNR NMSNV KW 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0.996E+02 

0.699E+02 

0.147E+01 

0.378E+02 

0.578E+02 

0.184E+02 

0.652E+02 

0.992E+02 

0.926E+02 

0.782E-03 

0.106E+03 

0.308E+00 

0.325E+02 

0.814E+02 

0.992E+02 

0.524E+01 

0.189E+01 

0.503E+00 

0.928E+02 

0.334E+02 

0.107E+01 

0.111E+02 

0.194E+02 

0.229E+01 

0.384E+02 

0.987E+02 

0.731E+02 

0.412E-03 

0.808E+02 

0.407E+02 

0.586E+01 

0.281E+01 

0.149E+01 

0.595E+01 

0.494E-01 

0.984E-01 

0.295E+01 

0.631E+02 

0.131E+02 

0.273E-02 

0.299E+02 

0.102E+00 

0.123E+02 

0.544E+02 

0.894E+02 

0.773E+00 

0.147E+01 

0.383E+00 

0.203E+01 

0.705E+01 

0.361E+02 

0.123E+00 

0.754E+00 

0.440E+02 

0.529E+01 

0.119E+01 

0.110E+01 

0.568E+01 

0.533E-01 

0.615E+02 

0.137E+02 

0.153E-02 

0.238E+02 

0.114E+00 

0.232E+01 

0.685E+01 

0.112E+00 

0.665E+00 

0.772E+02 

0.402E+01 

0.127E+00 

0.543E+01 

0.255E+01      0.411E+01 

0.503E+02 

0.128E+02 

0.387E+01 

0.118E+02 

0.382E+02      0.294E+02 

0.290E+00 

0.863E+00 

0.807E-01        0.829E-01 
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Table 7.6: PERGAP at 100 Evaluations when starting at GAP/a » 10 

Test 
function 

Method 

NM RS9 NMSNR NMSNV KW 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0.985E+02 

0.534E+01 

0.963E+00 

0.369E+00 

0.544E+01 

0.460E+01 

0.220E+01 

0.908E+02 

0.232E+02 

0.399E+02 

0.132E+00 

0.147E+01 

0.632E+01 

0.559E+02 

0.137E+00 

0.372E+01 

0.138E+00 

0.890E+02 

0.338E+01 

0.541E+00 

0.727E+00 

0.277E+01 

0.615E+00 

0.108E+01 

0.776E+02 

0.151E+02 

0.548E+02      0.548E+02 

0.213E+02 

0.336E+04 

0.414E+00 

0.338E+01 

0.400E+02 

0.806E-01 

0.323E+01 

0.925E+02 

0.453E+01 

0.104E+01 

0.578E+01 

0.259E+01 

0.774E+00 

0.286E+01 

0.944E+02 

0.683E+02 

0.210E+00 

0.388E-02 

0.395E+01 

0.806E+02 

0.267E-01 

0.372E+01 

0.414E-02 

0.925E+02 

0.606E+01 

0.117E+01 

0.651E+01 

0.239E+01 

0.504E+00 

0.337E+02 

0.944E+02 

0.828E+02 

0.548E+02      0.548E+02 

0.338E+02      0.400E+02 

0.434E-01        0.304E-01 

0.266E+00 

0.421E+01 

0.827E+02 

0.577E-02 

0.338E+01 

0.389E-02 

0.882E+02 

0.841E-01 

0.123E-01 

0.121E+01 

0.877E+00 

0.367E+02 

0.341E+01 

0.822E+87 

0.152E+05 

0.347E+01 

0.192E+02 

0.259E+01 
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Table 7.7: PERGAP at 1,000 Evaluations when starting at GAP I a « 10 

Test 
function 

Method 

NM RS9 NMSNR NMSNV KW 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0.985E+02 

0.536E+01 

0.963E+00 

0.356E+00 

0.544E+01 

0.462E+01 

0.217E+01 

0.908E+02 

0.232E+02 

0.245E-01 

0.399E+02 

0.132E+00 

0.163E+01 

0.632E+01 

0.559E+02 

0.137E+00 

0.373E+01 

0.153E+00 

0.863E+02 

0.299E+01 

0.587E+00 

0.404E+00 

0.272E+01 

0.630E+00 

0.568E+00 

0.618E+02 

0.103E+02 

0.427E+02 

0.165E+01 

0.873E+00 

0.140E+00 

0.180E+01 

0.147E+00 

0.224E-01 

0.175E+02 

0.536E-01 

0.108E+01 

0.312E+01 

0.298E+02 

0.720E-01 

0.277E+01 

0.420E-02 

0.696E+02 

0.834E+01 

0.294E-01 

0.160E+02 

0.271E-01 

0.178E-01 

0.225E+01 

0.148E+02      0.806E+02 

0.135E+01 

0.720E+00 

0.131E+00 

0.140E+00 

0.153E+00      0.251E+00 

0.115E+02 

0.622E+01 

0.255E-01 

0.363E-01 

0.176E+00      0.172E+00 

0.239E+01      0.239E+01 

0.256E+02      0.110E+02 

0.391E-02 

0.212E-01 

0.204E+01 

0.405E-02 

0.850E-01 

0.123E-01 

0.170E+01      0.121E+01 

0.513E+00 

0.201E+02 

0.223E+01 

0.121E+02      0.822E+87 

0.137E+05 

0.296E+01 

0.125E+02 

0.175E+01 
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Table 7.8: PERGAP at 10,000 Evaluations when starting at GAP/a « 10 

Test 
function 

Method 

NM RS9 NMSNR NMSNV KW 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0.985E+02 

0.536E+01 

0.963E+00 

0.356E+00 

0.544E+01 

0.462E+01 

0.217E+01 

0.908E+02 

0.232E+02 

0.245E-01 

0.399E+02 

0.132E+00 

0.163E+01 

0.632E+01 

0.559E+02 

0.137E+00 

0.373E+01 

0.153E+00 

0.863E+02 

0.299E+01 

0.587E+00 

0.404E+00 

0.272E+01 

0.630E+00 

0.569E+00 

0.618E+02 

0.103E+02 

0.223E-01 

0.175E+02 

0.536E-01 

0.109E+01 

0.312E+01 

0.298E+02 

0.720E-01 

0.277E+01 

0.154E+02 

0.900E+00 

0.910E+00 

0.292E-01 

0.146E+01 

0.936E-01 

0.844E-01 

0.256E+02 

0.342E+01 

0.232E-01 

0.675E+01 

0.348E-01 

0.157E+00 

0.180E+01 

0.419E-02 

0.818E+01 

0.869E-02 

0.133E+01 

0.420E-02 

0.560E+01      0.734E+02 

0.772E+00 

0.896E+00 

0.271E-01 

0.885E-01 

0.728E-01 

0.431E+01 

0.221E-01 

0.298E-01 

0.161E+00 

0.183E+01 

0.756E+01 

0.848E-02 

0.839E-01 

0.123E-01 

0.138E+01      0.121E+01 

0.426E+00 

0.131E+02 

0.339E+01      0.162E+01 

0.385E+01      0.822E+87 

0.405E+00 

0.253E+01 

0.102E+02 

0.115E+01      0.133E+01 

0.423E-02 
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7.3.1 Discussion of Algorithmic Performance 

As in the univariate case, algorithm KW performed quite well on some 

functions and poorly on others. In those graphs where an asterisk appears next to 

an algorithm's label in the legend, the performance is not graphed either due to 

a numerical overflow condition or extremely high values of PERGAP. A hyphen 

appears in the tables for the same reason. 

Early during the minimization, method KW is performing the most ef- 

ficiently when it is doing well. Otherwise, method RS9 is performing the most 

efficiently. However, method RS9 eventually converges falsely and usually by 1000 

function evaluations methods NMSNR and NMSNV are outperforming it. Smaller 

critical values could make methods NMSNR and NMSNV more efficient early dur- 

ing the minimization (see Section 7.3.2), but are less efficient as the minimization 

continues. 

And, as we observed in the univariate experiment, our proposed algorithm 

eventually outperforms KW on almost all of the functions by the time the simu- 

lation is terminated. Among the two implementations of our algorithm, method 

NMSNV (the one which uses the variance of the vertex means) is a more efficient 

implementation than method NMSNR (the one which uses the range of the vertex 

means). 

7.3.2 Sensitivity of NMSNR, NMSNV to Critical Values 

When considering the sensitivity of these two implementations to the choice 

of critical values we included some higher dimensional problems; that is, additional 

simulations using the Variably Dimensioned function (19-21) and the Extended 

Rosenbrock function (22-24) with n = 10,20, and 50 were made. These six functions 
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along with the other 18 test functions were used against both methods using critical 

values corresponding to a = 0.3,0.2,0.1,0.05, and 0.01. The average cost required 

to reduce PERGAP to 10% is reported in Tables 7.9 and 7.10, where the functions 

are grouped by dimension. 

As we saw in the univariate testing, the sensitivity of methods NMSNR 

and NMSNV to changes in the significance level are relatively small. One could 

make an argument for smaller critical values for method NMSNV, but there does 

not appear to be a trend in the sensitivity of method NMSNR. From a theoretical 

perspective the higher critical values (a < 0.10) are more appealing; and, a better 

means towards lowering the number of function evaluations, particularly during the 

early stages of optimization, might be achieved by a procedure that adapts the 

critical values for the dependency that is introduced between shrinkages. 

7.4    Conclusion 

Once again, the two variants of our proposed algorithm, NMSNR and NM- 

SNV, have performed extremely well in comparison to the other algorithms tested. 

However, our NMSN implementations were not as dominant in higher dimensions 

as in the univariate experiment. The added complexity of minimizing in several 

dimensions in addition to the complexity of the multivariate functions we expect 

contributed to this end. 

The difference in the performance of the two implementations, NMSNR 

and NMSNV, demonstrates the possibility of an even better implementation using 

a different testing procedure. In particular, a testing procedure that adjusts the 

critical values to account for the dependency introduced between simplex shrinkages 
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Table 7.9:   Effect of Critical Value on Average Number of Function Evaluations 

Needed by NMSNR to Reduce PERGAP to 10% when starting at GAP/a » 1 

jesj. Level of Significance (a) 
uimensio 

function 0.30 0.20 0.10 0.05 0.01 

4 545 489 419 362 449 

2 10 126 126 126 126 126 

16 15 13 12 12 10 

3 7 7 7 7 7 

3 5 713 690 860 811 1278 

12 612 7 7 548 7 

6 56 50 46 39 38 

4 14 3638 4285 5300 5253 5230 

17 18 18 18 18 17 

6 2 2301 3683 2799 2641 2499 

8 
9 

13 

17418 

21 

16900 

20 

13486 

20 

16074 

20 

18708 

20 

9 
7 

18 

3827 

20 

3766 

20 

4576 

20 

4360 

20 

4053 

20 

10 19 81 62 62 56 52 

20 20 3310 4462 4283 3935 3455 

50 21 8363 6674 5570 4899 2816 

Average 2415 2427 2212 2304 2281 

Note: PERGAP was not reduced to 10% on functions 1, 8, 11, 15, or 22-24 (Ex- 

tended Rosenbrock with n = 10,20,50 respectively) prior to termination. 
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Table 7.10:  Effect of Critical Value on Average Number of Function Evaluations 

Needed by NMSNV to Reduce PERGAP to 10% when starting at GAP/a « 1 

-pesf. Level of Significance (a) 
ummiisiu 

function 0.30 0.20 0.10 0.05 0.01 

4 538 456 625 415 413 

2 10 126 126 126 126 126 

16 17 16 15 13 12 

3 7 7 7 7 7 

3 5 898 729 896 1166 1155 

12 602 624 3267 3208 3267 

6 67 47 46 63 58 

4 14 2873 3498 3564 3588 3604 

17 18 20 17 18 17 

6 2 2955 2971 2366 2935 3907 

8 
9 

13 

17252 

47 

17243 

42 

17220 

41 

16867 

37 

16801 

34 

9 
7 

18 

3758 

20 

3759 

20 

3749 

20 

3779 

20 

3829 

20 

10 19 65 65 65 65 65 

20 20 4956 5029 4855 4946 5060 

50 21 10844 10844 10844 10856 10832 

Average 2649 2676 2807 2829 3971 

Note: PERGAP was not reduced to 10% on functions 1, 8, 11, 15, or 22-24 (Ex- 

tended Rosenbrock with n = 10,20,50 respectively) prior to termination. 
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may be a promising direction. As Barton and Ivey (1993) have demonstrated, the 

probability of a shrinkage on a constant function decreases as the dimension of 

the parameter space increases. This fact is apparent from the probabilities given in 

Table 3.3 as well. Since our heuristic procedure does not have the correct size except 

following a shrinkage, the test may be increasing the sample size more often than 

it should. Therefore, more work is needed with respect to tuning the algorithm to 

improve its performance even more. 



Chapter 8 

Conclusion 

8.1     Summary 

In Chapter 1 we introduced the popular nonlinear optimization method 

of Neider and Mead (1965). The algorithm is popular because of its conceptual 

simplicity and it is an efficient method for many practical problems. Although 

much work has been done to improve its performance for deterministic optimization, 

a general proof of deterministic convergence has not been discovered. 

In Chapter 2 we reviewed several deterministic and stochastic applications 

of the Nelder-Mead simplex algorithm. It is with respect to the latter that our 

research has been focused. Because of the robustness of the algorithm to small per- 

turbations in the values of the objective function, this method has found widespread 

use in stochastic applications. However, this algorithm's performance degrades as 

the noise level is increased. 

In Chapter 3 we proved that the simplex converges to a point w.p. 1 on a, 

constant function with additive noise for one and two-dimensional problems. A proof 

for the general n-dimensional problem proved elusive, but we offer strong empirical 

evidence of this result. A successful general proof may require a different approach 

for measuring the size of the simplex because of the geometry of the reflection 

operation when n > 3. 

In Chapter 4 we demonstrated that the simplex can still shrink to a point 

on an unbounded univariate linear function obscured by noise. We provided evidence 

for this result both analytically using Markov chain theory and empirically using 
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Monte Carlo simulation. Our Markov chain analysis led us to a new modification 

of the Neider-Mead simplex algorithm which increases the number of observations 

taken at each vertex to reduce the noise level. The rule for changing the simplex 

size is based on familiar statistical hypothesis tests for equal means. 

In Chapter 5 we implement the proposed algorithm, which is only a heuris- 

tic rule by nature, and test its performance against the original Nelder-Mead algo- 

rithm, the previously known best-performing modified simplex algorithm and the 

Kiefer-Wolfowitz stochastic approximation algorithm. Our test results demonstrate 

the superiority of our approach for stochastic optimization. 

In Chapter 6 we discussed the extension of our proposed algorithm to 

the general n-dimensional problem. A number of possible candidate procedures 

are discussed and two of them were implemented in a multivariate test which we 

reported in Chapter 7. Use of the variance of the vertex means yielded better results 

than the use of the range of these means even though these two implementations 

were normalized to have the same size test following a shrinkage operation. 

8.2    Contributions 

Our proof of convergence of the Nelder-Mead simplex on stochastic func- 

tions with constant expectation is a new addition to the limited convergence results 

that are known to exist. Additionally, our analytical research into the convergence 

of the simplex on a one-dimensional linear function contaminated with noise demon- 

strates that Nelder-Mead is clearly the wrong algorithm to use for stochastic op- 

timization despite its robustness to small perturbations in the function's values. 

Furthermore, this analysis led us to the development of a new simplex method, 



117 

NMSN, for stochastic optimization, which adjusts the number of observations taken 

at each vertex by a statistical test for equal means. 

Our empirical studies of NMSN yielded a significant improvement in the 

quality of the minimum expected values obtained as compared to Nelder-Mead and 

the previously known best-performing variant RS9. And furthermore, NMSN was 

as efficient as Kiefer-Wolfowitz for most of our test functions. Therefore, NMSN 

has the potential to provide better answers than other known methods used for 

stochastic optimization. 

8.3    Future Research 

There are three general areas for future research implied by our results. 

First, a general proof of convergence of the simplex on constant functions with 

noise remains to be discovered. Secondly, a more interesting proof would be that 

our proposed algorithm converges to the optimum of the expected function. We 

are encouraged that such a result may be true given the empirical comparisons 

with the Kiefer-Wolfowitz algorithm which is known to converge to the optimizer 

w.p. 1. Finally, other modifications to tune the algorithm's performance should be 

pursued. A few possibilities for tuning include: (1) adjustment of the algorithm's 

parameters to increase the rate of convergence when the simplex is near the optimum 

{e.g. restoring the shrinkage and contraction coefficients to their standard values of 

0.5); (2) apply the testing procedure only after a shrinkage, which would eliminate 

the dependency problem and perhaps reduce the number of function evaluations 

required to reach a certain level of PERGAP; (3) develop better heuristic rules 

for changing the vertex sample size, particularly rules that are more robust to the 
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lack of independence (e.g. sequential procedures that incorporate information from 

iterations since the last shrinkage); and (4) incorporation of some of the better 

modifications discussed in Section 1.6, e.g. the weighted centroid approach. 
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Appendix A 

Graphs of Univariate Test Results 

The complete set of graphs of the results from the univariate experiment 

described in Chapter 5 are presented here for further reference. The graphs illustrate 

the average level of percent gap remaining between the expected function value at the 

current point and the expected function value at the minimum (all of which are zero) 

versus the average cost in terms of the number of function evaluations required for 

each of the four algorithms tested. Each test function and starting point combination 

are plotted twice. The graphs on the left side of the page use a linear scale for 

PERGAP while those on the right use a logarithmic scale for PERGAP. The linear 

scale is more illustrative for practical considerations; whereas, the logarithmic scale 

is more illustrative for theoretical considerations. Note the logarithmic scaling of the 

horizontal axis and that the lines for methods NM and RS9 typically stop well short 

of the lines for methods KW and NMSN. This is a result of the different stopping 

criteria used in the experiment. In general, algorithms NM and RS9 stopped as 

a result of the simplex size falling below 10~10, algorithm NMSN stopped as a 

result of exceeding 50,000 total function evaluations, and algorithm KW stopped 

upon reaching 10,000 iterations. All of the graphs display the performance of each 

algorithm up through the first 20,000 function evaluations. 
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Appendix B 

Tabular Output of Univariate Testing 

The average value of several variables at termination for each design point 

in the experiment described in Chapter 5 are provided here in tabular form. The 

values appearing in the tables are the average of 40 simulation runs. The variables 

that appear in the tables are defined as follows: 

Numlter: number of iterations at termination. 

NumEval: cumulative number of objective function evaluations. 

StepSize: size of simplex for simplex methods, or distance between two most 

recent points in Kiefer-Wolfowitz method. 

Error: expected function value at point of termination minus minimum expected 

function value. The point of termination is the centroid of the final simplex, 

or the last point in the Kiefer-Wolfowitz method. 

PerGap: percentage gap remaining in expected function value. Pergap = 100 x 

Error / Initial Cap, where the initial gap is the expected function value at the 

starting point minus the minimum expected function value. 

Note that methods NM and RS9 terminated as a result of falling below the minimum 

simplex size of 10~10, method NMSN terminated as a result of exceeding 50,000 

cumulative function evaluations and method KW terminated as a result of reaching 

a maximum of 10,000 iterations. 



A hyphen appears in entries for method KW in Table B.4. When a hyphen 

appears under StepSize, our implementation of the Kiefer-Wolfowitz procedure took 

so large a step that the computer output read "Inf," resulting in overflow conditions 

for the variables Error and PerGap. 



Table B.l: Output at Termination for Univariate Function 1 

GAPja = 1.0 ± 0.1 

Method      Numlter       NumEval      StepSize Error           PerGap 

NM          0.358E+02   0.736E+02    0.582E-10 0.764E+00 0.753E+02 

RS9         0.747E+03    0.203E+04    0.943E-10 0.453E+00 0.455E+02 

NMSN     0.380E+02    0.557E+05    0.234E-01 0.111E-01 0.109E+0I 

KW 0.10015+05 0.200E+05 0.101 E-02 0.233E-01 0.23015+01 

GAP/a = = 10.0 ±0.1 

Method Numlter NumEval StepSize Error PerGap 

NM 0.386E+02 0.792E+02 0.582E-10 0.204E+01 0!204E+02 

RS9 0.759E+03 0.207E+04 0.952E-10 0.461 E+00 0.462E+01 

NMSN 0.460E+02 0.554 E+05 0.33115-01 0.725E-02 0.72415-01 

KW 0.100E+05 0.200E+05 0.115E-02 0.231E-01 0.230E+00 

GAP/a = 100.0 ± 0.1 

Method Numlter       NumEval       StepSize Error PerGap 

NM 0.433E+02 0.88615+02 0.582E-10 0.13215+02 0.13215+02 

RS9 0.778E+03 0.212E+04 0.947E-10 0.556E+00 0.556E+00 

NMSN 0.556E+02 0.548E+05 0.871E-01 0.779E-02 0.779E-02 

KW 0.100E+05 0.200E+05 0.112E-02 0.619E+02 0.619E+02 
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Table B.2: Output at Termination for Univariate Function 2 

GAI'/<T= 1.0 ±0.1 

Method      Numlter       NumEval      StepSize Error PerGap 

NM 0.360E+02   0.739E+02   0.582E-10 0.944E+00 0.945E+02 

RS9 0.754E+03    0.205E+04    0.950E-10 0.495E+00 0.494E+02 

NMSN     0.394E+02    0.547E+05    0.211E-01 0.101E-01 0.999E+00 

KW 0.100E+05    0.200E-I-05    0.13115-02 0.20715-01 0.204 E+Ul 

GAP/a = \0.0±0.\ 

Method Numlter NumEval StepSize          Error PerGap 

NM 0.382E+02 0.785E+02 0.582E-10 0.222E+01 0!222E+02 

RS9 0.753E+03 0.205E+04 0.948E-10 0.560E+00 0.560E+01 

NMSN 0.431 E+02 0.5(5015+05 0.31715-01 0.52GE-02 0.526K-01 

KW 0.100E+05 0.200E+05 0.13415-02 0.211E-01 0.21015+00 

GAP/a- = 100.0 ± 0.1 

Method      Numlter NumEval StepSize          Error PerGap 

NM 0.433E+02 0.886E+02 0.582E-10 0.156E+02 0.15615+02 

RS9 0.793E+03 0.216E+04 0.94915-10 0.66515+00 0.66515+00 

NMSN 0.592E+02 0.549E+05 0.642E-01 0.615E-02 0.615E-02 

KW 0.100E+05 0.200E+05 0.118E-02 0.666E+02 0.666E+02 
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Table B.3: Output at Termination for Univariate Function 3 

Gi4P/<7 = 1.0±0.1 

Method      Nuinlter       NumEval        StepSize           Error PerCiap 

NM          0.370E+02    0.761E+02    0.582E-10 0.430E+00 0.421E+U2 

RS9          0.783E+03    0.213E+04     0.947E-10 0.281E+00 0.285E+02 

NMSN     0.364E+02    0.552E+05    0.943E-01 0.629E-02 0.643E+00 

KW         0.100E+05    0.200E+05     0.113E-02 0.772E-02 0.767E+00 

GAP/a = 10.0 ±0.1 

Method      Numlter       NumEval        StcpSize           Error PnrCap 

NM 0.387E+02 0.793E+02 0.582E-10 0.323E+00 0.323E+01 

RS9 0.795E+03 0.216E+04 0.949E-10 0.250E+00 0.250E+01 

NMSN 0.394E+02 0.552E+05 0.109E+00 0.334E-02 0.335E-01 

KW 0.100E+05 0.200E+05 0.12715-02 0.77115-02 0.770E-01 

GAP/a = 100.0 ±0.1 

Method Numlter NumEval StepSize Error           PerGap 

NM 0.414E+02 0.849E+02 0.582E-10 0.329E+00 0.329E+00 

RS9 0.796E+03 0.21715+04 0.937E-10 0.21715+00 0.21715+00 

NMSN 0.521 E+02 0.54215+05 0.11315+00 0.3G5E-02 0.36515-02 

KW 0.100E+05 0.20015+05 0.11815-02 0.773E-02 0.773E-02 
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Table B.4: Output at Termination for Univariate Function 4 

GAP/(x = 1.0 ±0.1 

Method     Numlter       NumEval       StepSize Error PerGap 

NM          0.371E+02    0.763E+02    0.582E-10 0.627E+00 0.614E+02 

RS9          0.807E+03    0.21913+04     0.948E-10 0.254E+00 0.253E+02 

NMSN    0.355E+02   0.547E+05   0.248E+00 Q.797E-02 0.795E+00 

KW         0.100E+05    0.200E+05     0.119E-02 0.250E-01 0.247E+01 

GAP/<J = 10.0 + 0.1 

Method       Numlter        NumEval        StepSiz-e Error |-»<;rC!a.|> 

NM          0.391 E+02    0.802E+02     0.582E-10 0.176E+00 0.I76E+0I 

RS9         0.805E+03    0.219E+04    0.953E-10 0.225E+00 0.225E+01 

NMSN     0.384E+02    0.554E+05    0.205E+00 0.862E-02 0.862E-01 

KW         0.100E+05    0.200E+05           - 

GAP/a = 100.0 + 0.1 

Method      Numlter       NumEval        StepSize Error Per Clap 

NM          0.400E+02    0.820E+02    0.582E-10 0.296E+00 0.296E+00 

RS9          0.816E+03    0.222E+04     0.947E-10 0.233E+00 0.233E+00 

NMSN     0.384E+02    0.54913+05    0.24213+00 0.724E-02 0.724E-02 

KW          0.10015+05    0.200E+05            - 
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Table B.5: Output at Termination for Univariate Function 5 

GAP/a = 1.0 ±0.1 

Method      Numlter       NumEval      StepSize Error PerGap 

NM 0.36415+02    0.74815+02    0.58215-10 0.20515+01 0.20315-1 -03 

11S9 0.719E+03    0.196E+04    0.946E-10 0.506E+00 0.494E+02 

NMSN     0.458E+02    0.551E+05    0.111E-01 0.147E-02 0.150E+0O 

KW 0.100E+05    0.200E+05    0.127E-02 0.522E-02 0.522E+00 

GAP/<T = 10.0 ±0.1 

Method      Numlter       NumEval       StepSize Error PerGap 

NM 0.379E+02   0.778E+02   0.582E-10 0.582E+01 0!ö81E+02 

RS9 0.716E+03    0.195E+04    0.947E-10 0.279E+00 0.279E+01 

NMSN     0.568E+02    0.555E+05    0.131E-01 0.258E-02 0.259E-01 

KW 0.100E+05    0.200E+05    0.117E-02 0.268E+00 0.267E+01 

GAl>/a = 100.0 ±0.1 

Method      Numlter       NumEval       StepSize Error PerGap 

NM 0.442E+02    0.904E+02    0.582E-10 0.273E+01 0.273E+01 

RS9 0.734E+03    0.200E+04    0.940E-10 0.487E+00 0.487E+00 

NMSN     0.714E+02    0.550E+05    0.149E-01 0.160E-02 0.160E-02 

KW 0.100E+05    0.200E+05    0.110E-02 0.679E+01 0.679E+01 
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Table B.G: Output al, Termination for Univariate Function (i 

GAP/(T= 1.0 ±0.1 

Method      Numlter      NumEval      StepSize         Error PerGap 

NM          0.360E+02    0.739E+02    0.582E-10 0.373E+00 0.373E+02 

RS9          0.731E+03    0.199E+04    0.948E-10 0.318E+00 0.320E+02 

NMSN     0.394E+02    0.547E+05    0.213E-01 0.326E-02 0.323E+00 

KW         0.100E+05    0.200E+05    0.118E-02 0.147E+02 0.146E+04 

GAP/a = 10.0 ±0.1 

Method      Numlter       NumEval       StepSize          Error PerGap 

NM          0.369E+02    0.758E+02    0.582E-10 0.461E±00 O^GOE+Ol 

11S9          0.722E+03    0.197E-HM    0.953E-10 0.290E+00 0.29112+01 

NMSN     0.410E+02    0.556E+05    0.241E-01 0.297E-02 0.296E-01 

KW         0.100E+05    0.200E+05    0.122E-02 0.629E+01 0.632E+02 

GAP/a = 100.0 + 0.1 

Method      Numlter       NumEval      StepSize          Error PerGap 

NM           0.376E+02    0.772E+02    0.582E-10 0.G31E+01 0.332E+02 

RS9          0.716E+03    0.195E+04    0.951E-10 0.491E-01 0.258E+00 

NMSN     0.538E+02    0.555E+05    0.107E-01 0.652E-03 0.343E-02 

KW         0.100E+05    0.200E+05    0.226E-03 0.164E-03 0.862E-03 



150 

Table B.7: Output at Termination for Univariate Function 7 

GAP/a = 1.0 ±0.1 

Method      Numlter       NumEval       StepSize Error PerGap 

NM 0.367E+02    0.754E+02    0.582E-10 0.558E+00 0.549E+02 

RS9 0.781E+03    0.212E+04     0.947E-10 0.203E+00 0.203E+02 

NMSN     0.369E+02    0.554E+05    0.108E+00    0.369E-02 0.367E+00 

KW 0.10015+05    0.200E+05     0.121 H-0'2      0.85215-02 0.83915+00 

GAP/a = 10.0 + 0.1 

Method      Numlter       NumEval       StepSize Error PerGap 

NM 0.388E+02    0.795E+02    0.582E-10 0.238E+00 Ö.238E+01 

RS9 0.791E+03    0.215E+04     0.944E-10 0.249E+00 0.249E+01 

NMSN     0.390E+02    0.550E+05    0.122E+00     0.196E-02 0.196E-01 

KW 0.100E+05    0.200E+05     0.113E-02     0.847E-02 0.845E-01 

GAP/a= 100.0 + 0.1 

Method      Numlter       NumEval       StepSize Error PerGap 

NM 0.408E+02    0.83515+02    0.58215-10 0.293E+00 0.29315+00 

RS9 0.798E+03    0.217E+04    0.948E-10 0.222E+00 0.222E+00 

NMSN     0.451E+02    0.554E+05    0.130E+00 0.279E-02 0.279E-02 

KW 0.100E+05   0.200E+05    0.126E-02 0.258E+01 0.258E+01 



Table B.8: Output at Termination for Univariate Function 8 

GAP/a = 1.0 ±0.1 

Method      Nunilter       NumEval       StepSize          Error PerGap 

NM          0.3G1E+02    0.74113+02     0.582E-10 0.49113+00 0.49113+02 

RS9          0.771E+03    0.209E+04     0.955E-10 0.349E+00 0.344E+02 

NMSN     0.358E+02   0.552E+05   0.112E+00 0.317E-02 0.308E+00 

KW         0.100E+05    0.200E+05     0+07E-02 0.861E-02 0.845E+00 

GAP/a = 10.0 + 0.1 

Method      Numlter       NumEval       StepSize          Error PcrCap 

NM          0.400E+02    0.821E+02     0.582E-10 0.742E+00 Ö.738E+01 

RS9         0.809E+03    0.220E+04     0.944E-10 0.202E+00 0.202E+01 

NMSN     0.395E+02    0.555E+05    0.139E+00 0.255E-02 0.255E-01 

KW          0.100E+05    0.20013+05     0.13213-02 0.98513-02 0.98413-01 

GAP/a = 100.0 ±0.1 

Method      Numlter       NumEval       StepSize          Error PerGap 

NM          0.449E+02    0.917E+02     0.582E-10 0.279E+01 0.278E+01 

RS9         0.822E+03    0.223E+04    0.944E-10 0.258E+00 0.258E+00 

NMSN     0.505E+02    0.557E+05    0.17113+00 0.2G4E-02 0.20413-02 

KW        0.100E+05   0.200E+05    0.101E-02 0.360E+02 0.360E+02 
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Table B.9: Output at Termination for Univariate Function 9 

GAP/a = 1.0 ±0.1 

Method      Numlter       NumEval       StepSize          Error PerGap 

NM          0.367E+02    0.755E+02    0.582E-10 0.40313+00 0.39913+02 

RS9          0.791E+03    0.215E+04     0.95815-10 0.218E+00 0.217E+Ü2 

NMSN     0.366E+02    0.543E+05    0.183E+00 0.318E-02 0.319E+00 

KW          0.100E+05    0.200E+05     0.114E-02 0.154E-01 0.153E+01 

GAP/a= 10.0 + 0.1 

Method      Numlter       NumEval       StepSize           Error PerGap 

NM          0.387E+02    0.795E+02    0.582E-10 0.295E+00 Ö.294E+01 

RS9         0.804E+03    0.218E+04    0.951E-10 0.260E+00 0.259E+01 

NMSN     0.373E+02    0.548E+05    0.243E+00 0.292E-02 0.292E-01 

KW         0.100E+05    0.200E+05     0.112E-02 0.191E+01 0.191 E+02 

GAP/a= 100.0 + 0.1 

Method      Numlter       NumEval        StepSize           Error PerGap 

NM          0.394E+02    0.808E+02    0.582E-10 0.239E+00 0.239E+00 

RS9         0.810E+03    0.220E+04     0.949E-10 0.188E+00 0.188E+00 

NMSN     0.389E+02    0.550E+05    0.196E+00 0.409E-02 0.409E-02 

KW          0.100E+05    0.200E+05     0.109E-02 0.327E+03 0.32713+03 
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Table B.10: Output at Termination for Univariate Function 10 

GAP'/a = 1.0 ±0.1 

Method     Numlter       NumEval       StepSize          Error PerGap 

NM          0.361E+02    0.742E+02    0.582E-10 0.102E+01 0.101E+03 

RS9          0.803E+03    0.21813+04     0.957E-I0 0.234 E+00 0.232E+02 

NMSN     0.356E+02    0.551E-I-05    0.18412+00 0.324 E-02 0.32012+00 

KW         0.100E+05    0.200E+05     0.126E-02 0.540E-01 0.542E+01 

GAP/a = 10.0 ±0.1 

Method      Numlter       NumEval       StepSize          Error PerGap 

NM          0.397E+02    0.814E+02     0.58213-10 0.292E+01 0.291 E+02 

RS9          0.816E+03    0.222E+04     0.941E-10 0.261E+00 0.261E+01 

NMSN     0.407E+02    0.548E+05    0.203E+00 0.413E-02 0.412E-01 

KW         0.100E+05    0.200E+05    0.120E-02 0.438E+00 0.437E+01 

GAP/a = 100.0 + 0.1 

Method      Numlter       NumEval       StepSize          Error PerGap 

NM           0.445E+02    0.909E+02     0.582E-10 0.278E+00 0.278E+00 

RS9          0.832E+03    0.226E+04     0.950E-10 0.169E+00 0.169E+00 

NMSN     0.464E+02    0.540E+05    0.270E+00 0.283E-02 0.283E-02 

KW          0.100E+05    0.200E+05     0.128E-02 0.4 2813+01 0.427E+01 
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Table B.ll: Output at Termination for Univariate Function 11 

GAP/a = 1.0 ±0.1 

Method      Numlter       NumEval      StepSize Error PerGap 

NM 0.369E+02    0.758E+02    0.582E-10 0.345E+00 0.338E+02 

RS9 0.756E+03    0.205E+04    0.953E-10 0.229E+00 0.231E+02 

NMSN     u.37(ibM-U2    0.5'18E-|-05    0.(>« 1 lO-Ol 0.805E-02 0.81 '2101{)() 

KW 0.100E+05    0.200E+05    0.108E-02 0.827E-02 0.822E+00 

GAP/a = 10.0 ±0.1 

Method      Numlter       NumEval      StepSize Error PerGap 

NM 0.367E+02    0.754E+02    0.582E-10 0.133E+00 0.'663E+01 

RS9 0.730E+03    0.198E+04    0.953E-10 0.653E-01 0.327E+01 

NMSN     0.411E+02   0.551E+05   0.363E-01 0.821E-03 0.409E-01 

KW 0.100E+05    0.200E+05    0.239E-03 0.718E-03 0.359E-01 

GAP/a= 100.0 ±0.1 

Method      Numlter       NumEval      StepSize Error Pn<!a|> 

NM 0.386E+02    0.792E+02    0.582E-10 0.213E+01 0.236E+02 

RS9 0.725E+03   0.197E+04   0.950E-10 0.230E-01 0.256E+00 

NMSN     0.505E+02    0.546E+05    0.215E-01 0.449E-03 0.498E-02 

KW 0.100E+05    0.200E+05    0.117E-03 0.558E-03 0.620E-02 
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Table B.12: Output at Termination for Univariate Function 12 

Gi4P/<r = 1.0±0.1 

Method     Numlter      NumEval      StepSize Error PerGap 

NM          0.358E+02    0.736E+02    0.582E-10 0.847E+00 0.843E+02 

RS9          0.761E+03    0.207E+04    0.952E-10 Ü.251E+00 0.251 E+02 

NMSN     0.3C7E+02    0.G48E+05    0.G64E-01 0.G52E-02 0.641 E-MK) 

KW         0.100E+05    0.200E+05    0.122E-02 0.850E-02 0.853E+00 

GAP/a = 10.0 ±0.1 

Method      Numlter       NumEval      StepSize Error PerGap 

NM          0.388E+02    0.797E+02    0.582E-10 0.393E+00 (Ü93E+0I 

RS9          0.762E+03    0.207E+04    0.956E-10 0.253E+00 0.253E+01 

NMSN     0.407E+02    0.553E+05    0.803E-01 0.478E-02 0.477E-01 

KW         0.100E+05    0.200E+05    0.130E-02 0.853E-02 0.852E-01 

GAP/a = 100.0 ±0.1 

Method      Numlter       NumEval      StepSize Error PerGap 

NM         0.416E+02   0.852E+02   0.582E-10 0.31GE+00 0.316E+00 

RS9         0.790E+03    0.215E+04    0.945E-10 0.260E+00 0.260E+00 

NMSN     0.521E+02    0.542E+05    0.792E-01 0.413E-02 0.413E-02 

KW         0.100E+05    0.200E+05    0.122E-02 0.103E-01 0.103E-0I 



Appendix C 

Graphs of Multivariate Test Results 

The complete set of graphs of the results from the multivariate experi- 

ment described in Chapter 7 are presented here for further reference. The graphs 

illustrate the average level of percent gap remaining between the expected func- 

tion value at the which are zero) versus the average cost in terms of the number 

of function evaluations required for each of the four algorithms tested. Each test 

function and starting point combination are plotted twice. The graphs on the left 

side of the page use a linear scale for PERGAP while those on the right use a 

logarithmic scale for PERGAP. The linear scale is more illustrative for practical 

considerations; whereas, the logarithmic scale is more illustrative for theoretical con- 

siderations. Note the logarithmic scaling of the horizontal axis and that the lines 

for methods NM and RS9 typically stop well short of the lines for methods KW and 

NMSN. This is a result of the different stopping criteria used in the experiment. In 

general, algorithms NM and RS9 stopped as a result of the simplex size falling below 

10"10, and algorithms KW, NMSNR and NMSNV stopped as a result of exceeding 

10,000(n + 1) total function evaluations, where n is the dimension of the parameter 

space. 
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Figure C.l: Test Results for Multivariate Functions 1-3, GAP jo « 1 
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Function 4 (n - 2, Gap/Sigma - 1) Function 4 (n - 2, Gap/Sigma - 1) 
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Figure C.2: Test Results for Multivariate Functions 4-6, GAP/a 
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Function 7 (n » 9, Gap/Sigma = 1) Function 7 (n « 9, Gap/Sigma = 1) 
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Function 10 (n - 2, Gap/Sigma - 1) Function 10 (n - 2, Qao/Slgma - 1) 
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Function 13 (n - 8, Gap/Sigma - 1) Function 13 (n - 8, Gap/Sigma - 1) 
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Figure C.9: Test Results for Multivariatc Functions 7-9, GAP ja « 10 
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Appendix D 

Tabular Output of Multivariate Testing 

The average value of several variables at termination for each design point 

in the experiment described in Chapter 7 are provided here in tabular form. The 

values appearing in the tables are the average of 40 simulation runs. The variables 

that appear in the tables are defined as follows: 

Numlter: number of iterations at termination. 

NumEval: cumulative number of objective function evaluations. 

StepSize: size of simplex for simplex methods, or distance between two most 

recent points in Kiefer-Wolfowitz method. 

Error: expected function value at point of termination minus minimum expected 

function value. The point of termination is the centroid of the final simplex, 

or the last point in the Kiefer-Wolfowitz method. 

PerGap: percentage gap remaining in expected function value. Pergap = 100 x 

Error / Initial Gap, where the initial gap is the expected function value at tlic 

starting point minus the minimum expected function value. 

Note that methods NM and RS9 terminated as a result of falling below the minimum 

simplex size of 10"10, methods NMSNR, NMSNV and KW terminated as a result of 

exceeding 10,000(n -f 1) cumulative; function evaluations (where n is the dimension 

of the parameter space). 
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A hyphen appears in entries for method KW in Tables D.4, D.6, D.1U, D.l 1, 

D.12, D.16, and D.18. When a hyphen appears under StepSize, our implementation 

of the Kiefer-Wolfowitz procedure took so large a step that the computer output 

read "Inf," resulting in overflow conditions for the variables Error and Per Gap. In 

Homo eases the function is steep enough to have caused overflow conditions lor Krror 

and PerGap without necessarily taking a very large step. 
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Table D.l: Output at Termination for Multivariate Function 1. 

GAP (a « 1 

Method        Nuniltcr       NumEval        SlepSize Error 1'erGap 

NM           0.850E+02    0.232E+03     0.770E-10 0.102E+01 0.996E+02 

RS9          0.718E+03    0.204E+04    0.953E-10 0.965E+00 0.945E+02 

NMSNR   0.317E+02    0.463E+05    0.340E+01 0.163E+00 0.160E+02 

NMSNV    0.350E+02    0.451E+05    0.309E+01 0.133E+00 0.130E+02 

KW          0.667E+04    0.400E-I-05    0.313E-02 0.739E+00 0.7'24 IC+02 

GAP/a « 10 

Method       Numlter       NumEval       StepSize Error PerGap 

NM           0.846E+02    0.231E+03     0.742E-10 0.985E+01 0.985E+02 

RS9           0.718E+03    0.204E+04     0.943E-10 0.893E+01 0.893E+02 

NMSNR   0.320E+02   0.45313+05    0.96515+01 0.85215+00 0.85215+01 

NMSNV    0.500E+02    0.440E+05    0.467E+01 0.114E+00 0.114E+01 

KW          0.667E+04    0.400E+05    0.312E-02 0.693E+01 0.693E+02 
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Table D.2: Output at Termination for Multivariate Function 2. 

GAP/a « 1 

Method        Numlter       NumEval        StepSiae           Error PerCJap 

NM            0.156E+03    0.441E+03     0.761E-10 0.666E+00 0.634E+0'2 

RS9           0.104E+04    0.303E+04     0.950E-10 0.342E+00 0.325E+02 

NMSNR   0.335E+02   0.766E+05    0.164E+01 0.255E-01 0.245E+01 

NMSNV   0.336E+02    0.801E+05    0.168E+01 0.233E-01 0.223E+01 

KW           0.583E+04    0.700E+05     0.534E-02 0.353E-01 Ö.341E+0I 

GAP I a « 10 

Method       Numlter       NumEval       StepSize          Error PerGap 

NM 0.168E+03   0.463E+03    0.711E-10 0.600E+00 ' 0.599E+01 

RS9           0.106E+04    0.307E+04     0.949E-10 0.302E+00 0.302E+01 

NMSNR   0.414E+02    0.794E+05    0.238E+01 0.582E-01 0.583E+0U 

NMSNV    0.385E+02    0.799E+05    0.305E+01 0.502E-01 0.499E+00 

KW           0.583E+04    0.700E+05     0.534E-02 0.843E-02 0.844E-01 
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Table D.3: Output at Termination for Multivariate Function 3. 

GAP/a » 1 

Method       Numlter       NumEval       StepSize Error PcrCJap 

NM           0.982E+Ü2    0.2G5E-I-03     0.74 Hi-10 0.45GE-03 0.115E+0I 

RS9           0.718E+03    0.204E+04     0.951E-10 0.514E-03 0.114E+01 

NMSNR   0.338E+02    0.489E+05    0.597E+00 0.764E-03 0.298E+01 

NMSNV   0.336E+02    0.487E+05    0.543E+00 0.672E-03 0.133E+01 

KW           0.667E+04    0.400E+05     0.249E-02 0.564E-04 0.127E+00 

GAPja » 10 

Method        Numlter        NuinEval        StepSize Error PerGap 

NM          0.987E+02   0.266E+03    0.740E-1Ö 0.334E-02 0.739E+00 

RS9          0.720E+03    0.205E+04    0.956E-10 0.395E-02 0.969E+00 

NMSNR   0.337E+02    0.500E+05    0.520E+00 0.339E-02 0.727E+00 

NMSNV    0.338E+02    0.50GE+05    0.52GE+00 0.366E-02 0.872E+00 

KW           0.6G7E+04    0.400E+05     Ü.249E-02 0.564E-04 Ü.123E-01 
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Table DA: Output, at Termination lor Multivariate Function 4. 

GAP I a « 1 

Method       Numlter       NumEval      StepSize Error           PerGap 

NM            0.9G6E+02    0.24215-1-03    0.71315-10 0.15515+00 0.3(H) I'M 02 

RS9           0.601E+03    0.169E+04    0.95115-10 0.71115-01 0.110E+02 

NMSNR   0.592E+02    0.342E+05    0.807E-01 0.142E-02 0.174E+00 

NMSNV   0.597E+02    0.347E+05    0.907E-01 0.204E-02 0.473E-01 

KW           0.750E+04    0.300E+05          - -                   - 

GAP I a « 10 

Method        Numlter       NuniEval       StepSize Error            PerClap 

NM          0.107E+03   0.263E+03   0.717E-10 -0.111E+00 0.335E+00 

RS9           0.623E+03    0.174E+04    0.949E-10 0.617E-01 0.409E+00 

NMSNR   0.735E+02    0.335E+05    0.845E-01 0.445E-02 0.850E-02 

NMSNV   0.737E+02    0.332E+05    0.81915-01 0.163E-02 0.29015-02 

KW           0.750E+04    0.300E+05          - 
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Table D.5: Output at Termination for Multivariate Function 5. 

GAP/G « 1 

Method       Numlter       NumEval       StepSizc           Error PerGap 

NM           0.96415+02    0.26313+03     0.09313-10 0.56013+00 0.5:5113+02 

USD           0.724E+03    0.20013+04     0.05013-10 0.20413+00 0.19413+02 

NMSNR   0.311E+02    0.469E+05    0.102E+01 0.474E-01 0.454E+01 

NMSNV   0.309E+02    0.470E+05    0.110E+01 0.444E-01 0.432E+01 

KW           0.667E+04    0.400E+05     0.313E-02 0.547E-01 Ö.527E+01 

GAP I a « 10 

Method       Numlter       NumEval       StepSize          Error PerGap 

NM           0.103E+03    0.274E+03    0.717E-10 0.533E+00 0.555E+01 

RS9          0.733E+03   0.208E+04    0.947E-10 0.257E+00 0.261E+01 

NMSNR   0.352E+02    0.497E+05    0.13513+01 0.12613+00 0.12813+01 

NMSNV    0.34213+02    0.47813+05    0.13113+01 0.11813+00 0.12013+01 

KW           0.667E+04    0.400E+05     0.313E-02 0.119E+00 0.120E+01 
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Table D.6: Output at Termination for Multivariate Function 6. 

GAP/a » 1 

Method       Numlter       NumEval       StepSize Error            PerGap 

NM           0.11915+0:$    0.32715+03     0.73GE-I0 0.33315+00 0.I/MI5+02 

RS9           0.831 E+03    0.238E+04     Ü.939E-10 0.573E-01 0.252E+01 

NMSNR   0.325E+02   0.594E+05    0.729E+00 0.653E-03 0.283E-01 

NMSNV   0.314E+02    0.571E+05    0.785E+00 0.677E-03 0.300E-01 

KW          0.625E+04   0.500E+05    0.392E-02 - '      - 

GAP/a x\0 

Method       Numlter       NumEval       StepSize Error            PerGap 

NM          0.123E+03   0.335E+03    0.743E-10 0.237E+00 0.412E+01 

RS9           0.835E+03    0.238E+04     0.954E-10 0.364E-01 0.636E+00 

NMSNR   0.358E+02   0.604E+05    0.864E+00 0.485E-02 0.831 E-01 

NMSNV    0.337E+02    0.57515+05    0.82515+00 0.47715-02 0.82515-01 

KW          0.625E+04   0.500E+05    0.000E+00 
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Table D.7: Output, at, Termination for Multivariate Kunr.tion 7. 

GAP je « 1 

Method       Numlter       NumEval       StepSize Error PerGap 

NM           0.202E+03    0.598E+03    0.839E-10 0.740E+00 0.717E+02 

RS9           0.131E+04    0.395E+04     0.950E-10 0.393E+00 0.384E+02 

NMSNR   0.344E+02    0.116E+0G    0.15713+01 0.488E-02 0.47513+00 

NMSNV    0.343E+02    0.118E+0G    0.163E+01 0.458E-02 0.451E+Ü0 

KW          0.556E+04   0.100E+06    0.701E-02 0.244E-01 0.236E+01 

GAP/a « 10 

Method        Numlter       NumEval        StepSize Error PerClap 

NM           0.22613+03    0.63813+03     0.75513-10 0.19013+00 0.19113+01 

RS9          0.135E+04    0.403E+04    0.951E-10 0.558E-01 0.562E+00 

NMSNR   0.500E+02   0.123E+06   0.161E+01 0.637E-02 0.643E-01 

NMSNV   0.438E+02   0.119E+06    0.197E+01 0.622E-02 0.619E-01 

KW           0.556E+04    0.100E+06     0.701E-02 0.287E-01 0.289E+00 
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Table D.8: Output at Termination for Multivariate Function 8. 

GAP I a « 1 

Method       Numlter       NumEval       StepSize Error PerGap 

NM           0.184E+03    0.542E+03     0.826E-10 0.985E+00 0.988E+02 

RS9           0.122E+04    0.362E+04     0.952E-10 0.972E+00 0.976E+02 

NMSNR   0.350E+02   0.1041S+0G    0.3611S+01 0.24213+00 0.243E+U2 

NMSNV    0.422E+02    0.101E+0G    0.462E+01 0.838E-01 0.841E+Ü1 

KW          0.562E+04   0.900E+05    0.626E-02 0.400E+00 Ö.401E+02 

GAP I a « 10 

Method       Numlter       NumEval       StepSize Error PerGap 

NM           0.188E+03    0.549E+03    0.805E-10 0.913E+01 0.899E+02 

RS9            0.125E+04    0.367E+04     0.950E-10 0.637E+01 0.628E+02 

NMSNR   0.356E+02   0.104E+06   Q.876E+01 0.602E+00 0.593E+01 

NMSNV   0.608E+02   0.982E+05    0.603E+01 0.146E+00 0.143E+01 

KW          0.562E+04   0.900E+05    0.626E-02 0.923E+00 0.908E+01 
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Table D.9: Output at Termination for Multivariate Function 9. 

aAPj(JK I 

Method        Nunilter NiunEval StepSizo Error PerCap 

NM 0.184E+03 0.543E+03 0.825E-10 0.986E+00 0.929E+02 

RS9 0.122E+04 0.362E+04 0.952E-10 0.750E+00 0.708E+02 

NMSNR 0.349E+02 0.104E+06 0.225E+01 0.265E-01 0.251E+01 

NMSNV 0.348E+02 0.103E+06 0.212E+01 0.288E-01 0.272E+0I 

KW 0.562E+04 0.900E+05 0.626E-02 0.948E-01 Ö.895E+01 

GAP/a « 10 

Method       Numlter NumEval StepSize Error PerGap 

NM 0.213E+03 0.589E+03 0.749E-10 0.214E+01 0.206E+02 

RS9 0.127E+0d 0.372E+04 0.95(>E-10 0.101E+01 0.972E-I-01 

NMSNR 0.454E+02 Q.100E+06 0.317E+01 0.151E+00 0.144E+01 

NMSNV 0.516E+02 0.986E+05 0.302E+01 0.871E-01 0.838E+00 

KW 0.562E+04 0.900E+05 0.626E-02 0.120E+00 0.115E+01 
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Table D.10: Output at Termination for Multivariate Function 10. 

GAP I a « 1 

Method        Numlter       NumEval        StepSize Error PerCap 

NM 0.393E+03    0.914E+03     0.595E-13 0.160E+00 0.542E-03 

RS9 0.759E+03    0.200E+04     0.210E-12 0.119E+00 0.462E-03 

NMSNR   0.158E+03    0.341E+05    0.296E+00 0.522E-01 0.875E-03 

NMSNV   0.165E+03    0.343E+05    0.218E+00 0.217E-01 0.489E-03 

KW 0.750E+04    0.300E+05    0.000E+00 - '      - 

GAP I a « 10 

Method       Numlter       NumEval       StepSize Error PerGap 

NM 0.252E+03    0.535E+03    0.556E-13 0.113E+01 0.213E-01 

RS9 0.829E+03    0.220E+04    0.240E-12 0.112E+01 0.224E-01 

NMSNR   0.158E+03    0.339E+05    0.292E+00 0.105E+01 0.224E-01 

NMSNV   0.165E+03    0.343E+05    0.224E+00 0.102E+01 0.216E-01 

KW          0.750E+04   0.300E+05   0.000E+00 



Table D.ll: Output at Termination for Multivariate Function 11. 

GAP ja » 1 

Method       Numlter       NumEval       StepSize           Error PerGap 

NM           0.1ME+03    0.321 E-l-03    ().(>79E-I() 0.11113+01 0.I08E+03 

HS9           0.821E+03    0.235E+04     0.937E-10 0.780E+00 0.755E+02 

NMSNR   0.328E+02   0.586E+05    0.115E+01 0.121E+00 0.116E+02 

NMSNV   0.350E+02    0.556E+05    0.981E+00 0.740E-01 0.727E+01 

KW           0.625E+04    0.500E+05     0.322E-03             - '      - 

GAP/am 10 

Method       Numlter       NumEval       StepSize          Error PerGap 

NM          0.121E+03   0.334E+03    0.715E-10 0.434E+01 0.379E+02 

RS9          0.839E+03    0.239E+04    0.958E-10 0.195E+01 0.170E+02 

NMSNR   0.401E+02   0.566E+05    0.203E+01 0.333E+00 0.285E+01 

NMSNV    0.547E+02    0..pH9E-|-().r>    0.136E+01 0.885E-0I 0.761 FH 00 

KW           0.625E+04    0.500E+05    0.000E+00 0.106E+87 0.822E+87 
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Table D.12: Output at Termination fur Multivariate Function 12. 

GAP/a * 1 

Method       Numlter NumEval       StepSize Error           PerGap 

NM 0.980E+02 0.265E+03 0.709E-10 0.281E-01 0.568E+00 

RS9 0.719E+03 0.204E+04 0.936E-10 0.149E-01 0.727E+00 

NMSNR 0.331E+02 0.491E+05 0.579E+00 0.391E-02 0.982E-01 

NMSNV 0.329E+02 0.483E+05 0.546E+00 0.419E-02 0.100E+00 

KW 0.667E+04 0.400E+05 - '     - 

GAP/a « 10 

Method Nurnltcr NumEval StepSize,         Error PerGap 

NM 0.982E+02 0.265E+03 0.723E-10 0.876E-02 0.354E-01 

RS9 0.720E+03 0.205E+04 0.947E-10 0.115E-01 0.337E-01 

NMSNR 0.334E+02 0.479E+05 0.560E+00 0.387E-02 0.225E-01 

NMSNV 0.330E+02 0.477E+05 0.533E+00 0.404E-02 0.237E-01 

KW 0.6G7E+Ü4 Ü.400E+Ü5 - 
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Table D.13: Output at Termination for Multivariatc Function 13. 

GAP I a « 1 

Method       Numlter       NumEval       StepSize          Error Per Gap 

NM           0.187E+03   0.547E+03    0.823E-10 0.315E+00 0.332E+02 

RS9           0.121E+04    0.359E+04     0.953E-10 0.127E+00 0.120E+02 

NMSNR   0.392E+02    0.969E+05    0.837E+00 0.185E-01 0.171K-I-0I 

NMSNV    0.448E+02    0.98CE+05    0.853E+00 0.172E-01 0.153E+01 

KW          0.562E+04   0.900E+05    0.627E-02 0.278E-01 Ö.241E+01 

GAP/ff « 10 

Method        Numlter       NumEval       StepSize           Error PerGap 

NM           0.194E+03    0.556E+03    0.810E-10 0.347E+00 0.329E+UI 

RS9          0.122E+04   0.361E+04    0.955E-10 0.826E-01 0.795E+00 

NMSNR   0.447E+02   0.990E+05   0.764E+00 0.147E-01 0.144E+00 

NMSNV   0.416E+02    0.994E+05    0.800E+00 0.156E-01 0.151E+00 

KW           0.562E+04    0.900E+05     0.627E-02 0.278E-01 0.260E+00 
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Table D.14: Output at Termination for Multivariate Function 14. 

GAP/a « 1 

Method       Numlter       NumEval       SlcpSize           Error PerGap 

NM           0.11513+03    0.321E+03     0.675E-I0 0.780E+00 0.795E+02 

RS9          0.828E+03   0.237E+04    0.940E-10 0,506E-|-00 0.515E+02 

NMSNR   0.321E+02    0.565E+05    0.123E+01 0.317E-01 0.324E+01 

NMSNV   0.317E+02    0.570.E+05    0.115E+01 0.351E-01 0.358E+01 

KW           0.625E+04    0.500E+05     0.400E-02 0.103E+00 Ü.104E+02 

GAP/a fa 10 

Method       Numlter       NumEval       StepSize          Error PerGap 

NM           0.130E+03    0.348E+03    0.760E-10 0.847E+00 0.761E+01 

RS9           0.854E+03    0.243E+04     0.949E-10 0.354 E+00 0.317E+0I 

NMSNR   0.39612+02    0.585E+05    0.1(i2E+01 0.139E+00 0.I24E+0I 

NMSNV   0.380E+02    0.570E+05    0.156E+01 0.146E+00 0.129E+01 

KW           0.625E+04    0.500E+05     0.400E-02 0.261E+00 0.232E+01 



Table D.15: Output at Termination for Multivariate Function 15. 

GAP/a « 1 

Method       Numlter       NumEval       StepSize           Error PerGap 

NM           0.184E+03    0.542E+03     0.824E-10 0.989E+00 0.985E+02 

RS9           0.122E+04    0.36115+04     0.95115-10 0.870E+00 0.80615+02 

NMSNR   0.350E+02   0.104E+06    0.318E+01 0.111E+00 0.111E+02 

NMSNV   0.375E+02   0.103E+06    0.320E+01 0.788E-01 0.784E+01 

KW           0.562E+04    0.900E+05     0.626E-02 0.216E+00 Ö.215E+02 

GAP I a « 10 

Method        Numlter       NumEval       StepSize           Error PerGap 

NM           0.203E+03    0.572E+03     0.778E-10 0.618E+01 0.585E+02 

RS9           0.126E+04    0.369E+04     0.955E-10 0.332E+01 0.314E+02 

NMSNR   0.397E+02    0.100E+06    0.515E+01 0.734E+00 0.696E+01 

NMSNV   0.530E+02    0.98215-1-05    0.41415+01 0.51015+00 0.48915+01 

KW           0.562E+04    0.90015+05     0.62615-02 0.89215+00 0.84615+01 
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Table D.16: Output at Termination for Multivariate Function IG. 

GAP I a » 1 

Method       Numlter       NumEval       StepSize Error PerGap 

NM           0.763E+02    0.204E+03     0.728E-10 0.203E+00 0.460E+01 

RS9           0.636E+03    0.181E+04     0.948E-10 0.518E-01 0.113E+0I 

NMSNR   0.317E+02    0.343E+05    0.639E+00 0.199E-02 0.43GE-0I 

NMSNV   0.312E+02   0.341E+05    0.613E+00 0.255E-02 0.581 E-01 

KW          0.750E+04   0.300E+05    0.232E-02 0.106E-01 Ö.231E+00 

GAP/a « 10 

Method        Numlter       NumEval        StepSize Error PerCiap 

NM           0.788E+02    0.210E+03     0.737E-10 0.G80E-01 0.228E+00 

RS9           0.645E4-03    0.184E+04     0.957E-10 0.268E-01 0.884E-01 

NMSNR   0.335E+02   0.346E+05    0.822E+00 0.176E-02 0.595E-02 

NMSNV   0.333E+02    0.344E+05    0.900E+00 0.112E-02 0.377E-02 

KW          0.750E+04    0.300E+05           - 
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Table D.17: Output at Termination for Multivariate Function 17. 

GAP I a « 1 

Method        Numltcr       NumEval        StcpSizc Error PerGap 

NM 0.129E+03 0.347E+03 0.730E-10 0.403E+00 0.198E+01 

RS9 0.855E+03 0.243E+04 0.947E-10 0.293E+00 0.144E+01 

NMSNR 0.395E+02 0.576E+05 0.108E+01 0.995E-01 0.488E+00 

NMSNV 0.385E+02 0.592E+05 0.996E+00 0.979E-01 0.480E+00 

KW 0.G25E+04 0.500E+05 0.40013-02 0.15GE+00 0.761 E+00 

GAP/a « 10 

Method Numlter NumEval StepSize           Error PerCap 

NM 0.129E+03 0.348E+03 0.715E-10 0.675E+00 0.350E+01 

RS9 0.854E+03 0.243E+04 0.943E-10 0.523E+00 0.269E+0I 

NMSNR 0.399E+02 0.548E+05 0.110E+01 0.194E+00 0.100E+01 

NMSNV 0.382E+02 0.566E+05 0.102E+01 0.187E+00 0.970E+00 

KW 0.625E+04 0.500E+05 0.400E-02 0.234E+00 0.121E+01 
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Table D.18: Output at Termination for Multivariate Function 18. 

GAP I a » 1 

Method       Numlter       NumEval       StepSize Error PerGap 

NM 0.20GE+0U 0.6(M I3-|-0:J 0.858K-I0 O.21SJ10-O2 0.308K-I 00 

11S9 0.131E+04 Ü.394E+Ü4 0.90012-10 0.520E-03 0.421E+00 

NMSNR Q.410E+02 0.119E+06 0.621E4-00 0.122E-03 0.858E-01 

NMSNV 0.401E+02 0.124E+06 0.611E+00 0.124E-03 0.758E-01 

KW 0.556E+04 0.100E+06           - - '     - 

CAI'/am 10 

Method Numlter NumEval StepSize         Error PerGap 

NM 0.208E+03 0.606E+03 0.861 E-10 0.118E-02 0.610E-02 

RS9 0.131E+04 0.394E+04 0.962E-10 0.507E-03 0.477E-02 

NMSNR 0.426E+02 0.122E+06 0.632E+00 0.152E-03 0.368E-02 

NMSNV 0.414E+02 0.120E+06 0.638E+00 0.125E-03 0.326E-02 

KW 0.556E+04 0.100E+06 - 
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